

Fall Low Salinity Habitat (FLaSH)-Fish Health Study: Otolith Growth and Life History

Prepared by:

James A. Hobbs

Department of Wildlife, Fish and Conservation Biology

University of California-Davis

Prepared for:

California Department of Fish and Wildlife Contract E1183004-1-3

Ecosystem Restoration Program

980 9th Street

Sacramento, Ca 95814

C/O Gena Lasko Project Manager

22

23 **PROJECT DESCRIPTION**

24

25 In the Fall of 2011, a large scale multidiscipline study was launched by the Interagency
26 Ecological Program (IEP) to investigate the effects of freshwater outflow on low-salinity zone
27 habitat conditions and measure the response of Delta Smelt (*Hypomesus transpacificus*) to higher
28 than normal fall outflow (**Brown et al. 2014**). High outflow years provide positive benefits to
29 many estuarine species, including species of management importance such as the Delta Smelt
30 (**Sommer et al. 2007; Feyrer et al 2007; Nobriga et al 2008; IEP-MAST 2015**). However; the
31 ecological mechanisms associated with the effects of overall improved habitat conditions and
32 Delta Smelt response are not well understood. The 2009 Biological Opinion for operation of the
33 CVP and SWP in the South Delta required increased fall freshwater outflow to improve rearing
34 conditions for Delta Smelt, conditions which serendipitously existed in the fall of 2011
35 (**USFWS 2009**).

36 The purpose of this study was to examine the potential effects of stressors (e.g. contaminants,
37 pathogens/diseases, and poor feeding success) and habitat attributes (Salinity, Temperature,
38 Turbidity etc.) on fish condition and health status in the fall of 2011 (Wet Year) and compare
39 health responses to 2012-2014 (Below Normal to Critically Dry Years). Delta Smelt were
40 collected during the Fall Midwater Trawl (FMWT) and the Spring Kodiak Trawl (SKT) from
41 2011 to 2014, frozen in liquid nitrogen and necropsied by the UC Davis Aquatic Health Program
42 in the Department of Veterinary Medicine (URL). In this report we used several metrics of
43 otolith growth as proxies for fish growth and condition to explore relationships between fall
44 habitat conditions and the growth response for Delta Smelt.

45 The approach of this study was to examine otolith based metrics of growth for Delta Smelt in
46 relation to the dynamic (salinity, temperature, turbidity etc.) and static habitat attributes (CDFW
47 sampling stations, and regions of the upper estuary) measured at the sampling site to assess the
48 effects of habitat attributes on fish health and survival from late summer through the winter
49 spawning season. Fish were collected from three regions in the upper San Francisco Bay Delta
50 Estuary (SFE), namely the Cache Slough complex (Cache Slough and Sacramento Deepwater
51 Ship Channel, C/S), the Sacramento/San Joaquin river confluence and Suisun Bay.

52

53 In addition, otolith growth metrics were explored to better understand the effect of fish health
54 on reproductive output (fecundity) for female Delta Smelt collected during the Spring Kodiak

55 Trawl Survey. In this report we focus on otolith based metrics (growth and life history
56 phenotype and salinity history via otolith microchemistry) to assess the effect of habitat
57 attributes on short-term recent growth rates and fall growth rates of Delta Smelt.

58

59 **INTRODUCTION**

60

61 Fish are robust indicators of the ecological conditions in aquatic habitats. As such, fish
62 growth is an important endpoint for assessing the effect of environmental stressors on ecological
63 processes and functions. Growth in fish is indeterminate; where fish will continue to grow in
64 perpetuity given suitable habitat and feeding conditions, thus growth can be a reliable indicator
65 of habitat quality. To this end, fish otoliths (“ear-bones”) have been commonly used to
66 determine fish age (daily, annual) and age specific growth. Otoliths are comprised of calcium
67 carbonate and proteins, sequentially layered daily onto a primordial core formed prior to birth.
68 The layering of calcium and protein, when examined under light microscopy can be used to
69 quantify daily age, and the width of daily increments can be used as a proxy for daily growth, as
70 the secretion of calcium and protein is tied to the fish’s metabolism. However, validation of
71 direct proportional otolith growth and fish growth is required to make full use of this technique.
72 In previous studies, we have validated proportion otolith growth and fish growth for laboratory
73 cultured Delta Smelt (Hobbs et al. 2007). Thus, the growth history of Delta Smelt can be
74 reconstructed from the increment widths recorded since birth.

75 The chemical composition of the otolith can reveal provenance. Elements with similar
76 chemical properties to calcium are deposited within the otolith (e.g. Sr, Mg, Ba) in relative
77 proportion to the concentrations in the environment. Otoliths are biologically inert, such that,
78 once formed the chemical composition of the otolith is “locked” in place. This is particularly
79 valuable for determining the movement patterns of mobile fishes that undergo movements across
80 the landscape in association with reproduction. In our previous research we have used strontium
81 isotope ratios to reconstruct the salinity history of smelt utilizing the Low-Salinity Zone, as the
82 strontium isotope ratios of freshwater mix conservatively and predictively with saltwater, such
83 that narrow salinity zones can be identified with strontium isotope ratios in otoliths (Hobbs et al.
84 2010). Thus, otoliths can be used to determine daily growth rates and the salinity habitat where

85 this growth occurred, making otoliths a valuable tool for assessing the effects of environmental
86 variability on habitat quality and fish production.

87

88 *Conceptual Model*

89 The IEP-MAST life-cycle model of Delta Smelt was applied to develop predictions for Fall
90 Low-Salinity effects on habitat attributes and the response of Delta Smelt. Using published
91 research, knowledge gained from the recent Delta Smelt synthesis effort (IEP-MAST 2015), and
92 expert opinion we made directional predictions for how each variable would respond to high
93 outflow conditions in the fall of 2011 relative to 2012-2014. Predictions were made for Summer
94 (July – August), and Fall (September – December) and Winter (January – March). These
95 seasonal groupings correspond to general periods when Delta Smelt juveniles, subadults and
96 maturing adult are present in the Low-Salinity Zone. These groupings, correspond to the
97 Summer Townet Survey (TNS) Fall Midwater Trawl (FMWT) and Spring Kodiak Trawl (SKT
98 (**Honey et al. 2004**). The full list of variables, and predictions for each season, are given in Table
99 1.

100 Elevated fall freshwater outflow was predicted to effect the distribution of the Delta Smelt and
101 move the population downstream, closer to the ocean and away from water projects in the South
102 Delta. Higher than normal fall outflow was predicted to move X2 into Suisun Bay and increase
103 the area of the Low-Salinity, reduce water clarity and water temperatures. High fall flows were
104 also predicted to improve feeding conditions for Delta Smelt and reduce toxicity. These effects
105 on habitat attributes in the Low-Salinity Zone would predict that Delta Smelt abundance and
106 survival from summer to fall would improve growth and support a more diverse population, with
107 higher fecundity.

108 The IEP-MAST drought synthesis project work team has evaluated the current monitoring
109 data and other special studies data to evaluate the impact of the recent drought on habitat
110 attributes in the Low-Salinity Zone and the response of Delta Smelt utilizing the MAST
111 conceptual model for Delta Smelt (**IEP-MAST 2015**).

112 While this effort was designed to address the impact so drought, many of the same results
113 could be examined for the Fall Low Salinity Habitat Study. We examined anomaly values from

114 standardized long-term trends (2004-2014) comparing 2011 to 2012-2014 and have summarized
115 the finding in Table 1. Attributed with a solid black arrow depict the direction of the trend,
116 greyed arrows represent attributes not assessed. Water year 2011 was the second wettest period
117 since the beginning of the century. Freshwater outflows were extremely high and the resulting
118 location of X2, a geographic marker of Low-Salinity Zone was located in further downstream in
119 Suisun Bay in summer and fall, and the total area of Low-Salinity habitat was greater. Air
120 temperature, Mississippi Silverside abundance (larval predators of Delta Smelt) and Ammonia
121 concentrations (Sac Regional WWTP) were lower while water clarity (Secchi depth)
122 Largemouth Bass abundance and food abundances were greater. Delta Smelt were more
123 abundant in 2011, and had a broader spatial distribution resulting in faster growth rates (based on
124 an index of growth), greater life history diversity and higher reproductive output.

125 In this report we address research questions pertaining to the effect of fall habitat conditions
126 in 2011 on Delta Smelt growth rates in comparison to drier years of 2012-2015. Specifically we
127 quantified “Fall Growth” using the marginal increment widths of otoliths of Delta Smelt
128 collected during the Fall Midwater Trawl and the habitat attributes at the regional level and
129 reconstructed salinity history from otolith strontium isotope ratios to assess habitat attribute
130 effects on Delta Smelt growth. For fish collected during the Spring Kodiak Trawl, we quantified
131 the increment widths of daily increments formed during the Fall. However, fish collected in the
132 winter were beginning the formation of the annual winter band, and thus daily increment
133 periodicity is no longer reliable for back-calculating daily increments to a calendar date.
134 Therefore, we calculated the mean age at calendar dates for the fall months (Sept 1, Oct 1 and
135 Nov 1) of the Delta Smelt yearclass from the fish collected during the Fall Midwater Trawl.
136 Mean ages at calendar dates were then used to back-calculate a fall otolith increment growth
137 (Sept, Oct, and Nov) for Delta Smelt collected in the Spring Kodiak Trawl. Growth rates were
138 assessed among years and salinity history for the corresponding otolith growth using the otolith
139 strontium isotope ratios. Lastly, we examine the relationship between growth rates, life history
140 phenotypes and fecundity of Delta Smelt from 2011-2014.

141

142 **METHODS**

143 In the current report, delta smelt received from the FMWT and SKT fish survey were
144 removed from liquid nitrogen by staff at the Aquatic Health Program at UC Davis. Fork lengths

145 (FL) and body weights (BW) were measured while frozen to determine condition factor (CF).
146 Samples were allowed to thaw briefly to allow the skin to appear natural, then pictures were
147 taken, with a ruler and ID tag, for future image analysis. Otoliths were removed for age, growth,
148 and isotopic microchemistry determinations. The gonads and liver were carefully separated from
149 the GI tract. The GI tract was preserved in 95% ethanol at room temperature and sent to Randy
150 Baxter (Co-PI) at DFW for gut content analysis. Liver and gonads were weighed to determine
151 hepatosomatic (HSI) and gonadosomatic (GSI) indices, respectively. When livers and/or gonad
152 weights were greater than 0.005 g the samples were split into two portions. Un-split liver and
153 gonads were placed in 10% buffered formalin. If the liver or gonad were split then the first
154 portion was placed in 10% buffered formalin at room temperature for histopathology. Gonads of
155 females were histologically scored for development and a subset of the ripest females (late stage
156 4) was selected to quantify fecundity.

157

158 *Otoliths*

159 Sagittal otoliths were dissected from the head during necropsy and stored dry in tissue culture
160 trays. Before mounting, the otoliths were “cleared” by soaking in 95% ethanol for 24 hours.
161 Otoliths were mounted onto glass slides with Crystal Bond® thermoplastic resin in the sagittal
162 plane, ground to the core on both sides with wet-dry sandpaper and polished with a polishing
163 cloth and 0.3-micron polishing alumina. Otoliths were digitized with a 12 Megapixel digital
164 camera (AM Scope: www.amscope.com) at a magnification of 20X with an Olympus CH30
165 compound microscope. Otolith increments were enumerated and the distance from the core to
166 each daily ring was measured using Image-J NIH software . Three age readers separately
167 quantified otolith increments; the mean, median, average percent error and the coefficient of
168 variation of each individual fish were assessed. If the age reading by the three readers for an
169 individual fish was greater than 10% average percent error, the sample was selected for
170 processing of the second otolith for age analysis. When age agreement among multiple readers
171 could not be resolved, ageing was conducted by the principle investigator. If age agreement
172 could not be reduced to less than 10% APE the sample was removed from the study.

173 Otolith accretion for the fall months Sept-Dec were back-calculated from the otolith by
174 counting back from the edge of the otolith on daily increments and extracting the length of

175 otolith accreted for each month. Accretion rates were calculated by dividing by the number of
176 increments in each month.

177

178 *Microchemistry*

179 Otoliths were mounted on petrographic slides (20 per slide) for otolith microchemistry.
180 Otolith strontium isotope ratios were quantified using methods previously developed (Hobbs et
181 al 2007; 2010). Briefly, the strontium isotope profile from the core to the edge along a similar
182 path used for aging was scanned using a laser beam of 55-microns moving at a speed of 10-
183 microns per second. Laser profiles began at 100-micron in the core to ensure the analysis
184 encompass the entire natal chemistry. The otolith strontium isotope $^{87}\text{Sr} : ^{86}\text{Sr}$ profile was aligned
185 with the daily increments to determine the age and size at life history transition stages. The
186 strontium isotope ratios were resolved using methods developed for delta smelt (Hobbs et al.
187 2005). The data were resolved to the micron distance from the core using the scan speed and
188 verified by post laser ablation digital imaging to make sure the laser line-scan length matched the
189 data resolved length.

190

191 Habitat Attributes and Environmental Drivers

192

193 Delta Smelt habitat attributes were identified using several approaches. Salinity zones were
194 identified (<1psu, 1-6psu and >6psu) using the surface salinity at each station where Delta Smelt
195 were collected during the Fall Midwater Trawl Survey. In addition stations within the Cache
196 Slough and Sacramento Deepwater Ship Channel were further identified amongst the <1psu
197 stations. The salinity zone habitat the fish utilized during the fall was determined using the
198 strontium isotope ratios of the last 200 μm of otolith before capture. Our previous work has
199 established a relationship between strontium isotope ratios and salinity (**Hobbs et al 2010**).
200

201 **RESULTS**

202 *Marginal Otolith Accretion and Salinity Habitats*

203 We measured otolith accretion rates (daily increment widths (μm)) and strontium isotope ratios
204 profiles for 325 Delta Smelt collected during the Fall Midwater Trawl from 2011-2014 (Table 2).

205 A majority of the samples came from 2011 (N = 233) while few fish were collected in 2012 (N =
206 42), 2013(N = 17) and 2014 (N = 33) (Table 2). Accretion rates did appear to be faster in 2011
207 for the September, October and November surveys (Figure 1). However, there was a significant
208 ontogenetic effect with trends across months with marginal otolith accretion slowing from
209 September through December and with fish size as approximated by otolith length (Figure 2).

210 To account for the ontogenetic effect we modelled the marginal accretion of otolith using a
211 generalized linear model with a Gaussian distribution and log link function to account for the
212 otolith size effect and compare models with year as a factor and three metrics for salinity regions
213 including the CDFW region grouping, the Fall-Low Salinity habitat zones (Cache Slough-
214 Sacramento Deepwater Ship Channel, <1psu, 1-6psu and >6psu) at capture, and the fall salinity
215 history from otolith strontium isotope ratios. Modeling was conducted is a stepwise removal
216 procedure and in all models otoliths size and year were retained, and comparisons were made
217 amongst the three models for fall habitat using AIC's. Each model provided a robust fit to data,
218 no heterogeneity in variance was observed and data were residual plots showed no inherent
219 spatial or temporal correlation. The model including the fall salinity habitat derived from the
220 otolith strontium isotope ratios provided the lowest AIC of 2793.4, while the model with CDFW
221 regions provided the second lowest AIC of 2812.5 and the Fall Low-Salinity Habitat salinity
222 region the highest AIC of 2817.3 (Table 3). Marginal otolith accretion appeared to be lower for
223 individuals having spent the fall in salinity habitats greater than 2.5psu (Figure 3).

224 *Fall growth rates estimates from otolith increments of Delta Smelt collected from the Fall*
225 *Midwater Trawl*

226 Otolith accretion rates in September 2011 were approximately 1.5 times faster than
227 September accretion rates for the 2012-2014 years (ANOVA, MS=30.6, df=3, p<0.0001, while
228 October accretion rates were approximately 20% faster in 2011 (ANOVA, MS= 4.518, df=3.
229 p<0.0001 (Figure 4). There were no differences in accretion rates in November, and in
230 December accretion rates for 2011 were only faster than 2012, while 2013 and 2014 accretion
231 rates were faster than 2011 (ANOVA, MS= 2.159, p<0.0001. Ontogenetic effects were not
232 accounted for in these models.

233 Mean September otolith accretion rates differed among the regions of the estuary. In 2011
234 accretion was slower for fish collected in Suisun Bay and the Sacramento Deepwater Ship

235 Channel (SDWSC), while in 2012 accretion was fastest in Suisun Bay and Montezuma Slough
236 (Figure 5) Overall, fish collected in Montezuma Slough appeared to have the highest otolith
237 accretion rates while the SDWSC had the lowest for the month of September. However, these
238 are general patterns in means and no statistical tests were used since sample sizes were too low
239 in most cases (Figure 5).

240 *Fall growth rates estimates from otolith increments of Delta Smelt collected from the Spring*
241 *Kodiak Trawl*

242 We back-calculated the otolith accretion that occurred during the fall for 664 fish collected
243 during the Spring Kodiak Trawl (2012 = 195, 2013 = 198, 2014 = 156 and 2015 = 115). Since
244 fish collected during this survey are undergoing the formation of an annual age band, daily
245 otolith increment resolution was not possible and thus precise increment formation at calendar
246 date was not possible. We used the mean age-at-calendar date for the Delta Smelt collected
247 during the Fall Midwater Trawl Survey for each yearclass to select the age increments formed
248 during the fall for SKT fish. Since marginal otolith accretion was significant for September and
249 October, we used only these months to estimate fall growth for SKT fish. Strontium isotope
250 ratios deposited in the otolith during the fall was determined using the mean otolith length-at-age
251 for the Fall period. Salinity zones were then estimated using the described ranges of strontium
252 isotope ratios for defines salinity zones.

253 Greater than 90% of all Delta Smelt collected in the SKT survey from 2012-2015 reared in
254 habitats with salinity less 2.5psu (Table 4). The proportion of fish rearing in freshwater during
255 the fall and subsequently having spent the entire life in freshwater varied among the study years,
256 with 2013 having the greatest proportion, while the critically dry 2015 contributed the fewest
257 freshwater resident fish. The 2012 survey, which was the 2011 yearclass that experienced the
258 higher than normal fall outflow condition had a larger proportion of fish rearing in salinity
259 habitats from 1.6 to 2.5 psu (Table 4).

260 To account for the ontogenetic effect we modelled fall otolith accretion using a generalized
261 linear model with a Gaussian distribution and log link function to account for the otolith size
262 effect and test for a significant slope effect for year (survey years of SKT) and for salinity zones
263 as a categorical variable. Examination of diagnostic plots suggested no violation of the
264 homogeneity of variance, independence and normality assumption. The ontogenetic effect

265 (otolith length at Sept. 1), larger-older fish having slower growth than younger-small fish was
266 highly significant $p < 0.0001$, thus accounting for the ontogeny when comparing between years
267 was important (Figure 6). Inter-annual growth trends were similar to both back-calculated Fall
268 growth using FMWT fish and for marginal otolith increment accretion of FMWT fish. The 2011
269 yearclass (SKT 2012 survey) had higher accretion rates than 2012-2014 yearclasses, with a
270 highly significant negative slope through time (Figure 6). Fish rearing in the 0.5-1.0, 1.1-1.5 and
271 2.1-2.5 had faster otolith accretion rates relative to fish rearing in freshwater (Table 5).

272 *Growth, Life History Phenotype and Fecundity*

273 To determine the effect of fall otolith growth and life history phenotype on fecundity, we
274 examined the fecundity of 97 late stage 4 female Delta Smelt collected during the Spring Kodiak
275 Trawl Survey from 2012-2014 (2012 N = 36, 2013 N = 21 and 2014 N= 40) and fall otolith
276 accretion rate as a proxy for growth and the life history phenotype (freshwater resident or
277 migratory type). Linear regression of fecundity with fork-length, fall growth and life history
278 phenotype as a factor was analyzed using the lm function in R. The model provided a good fit to
279 the fecundity data, with an adjusted R² of 0.61, and was highly statistically significant (Table 6).
280 Examination of diagnostic plots suggested no violation of the homogeneity of variance,
281 independence and normality assumption. Fish fork-length and fall growth had a significant
282 positive effect on fecundity and freshwater resident fish had slightly higher fecundity than
283 migratory fish (Figure 7).

284 DISCUSSION

285 Delta Smelt responded to the high freshwater outflow conditions in the Fall of 2011 with
286 faster growth rates and higher fecundity. However, we were not able directly assess the
287 cumulative effect of different environmental drivers on growth and fecundity, as with field data,
288 high freshwater flows can have many interactive effects on habitat attributes simultaneously and
289 thus associating effects to any one driver is not possible. Growth rates can be influenced by a
290 variety of habitat attributes including temperature, salinity and prey availability. In general,
291 temperatures were cooler and salinity was lower in the fall of 2011 relative to 2012-2014. We
292 did not directly assess prey availability in this report, however diet data was collected for Delta
293 Smelt collected during the 2012 and 2013 Spring Kodiak Trawl Surveys (2012 = 2011 yearclass

294 and 2013 = 2012 yearclass). Although we did not make direct comparison of otolith growth and
295 stomach fullness, mean stomach fullness did appear to be greater in winter 2012 compared to
296 2013, thus food availability was likely higher during the wet year of 2011-2012 (*S.Slater*
297 *unpublished data*). The increased outflow conditions in the fall of 2011 appeared to provide
298 better overall habitat conditions for Delta Smelt rearing in freshwater and the Low-Salinity Zone,
299 which resulted in greater abundance in the fall and winter, a wider spatial distribution, increased
300 feeding conditions and faster growing fish.

301 Marginal increment accretion showed similar inter-annual trends to fall growth accretion and
302 was driven by other habitat attributes including the salinity history of individuals derived from
303 the otolith strontium isotope ratios. Fish having reared in habitats with salinity greater than 2.5
304 psu exhibited reduced growth rates. Exposure to higher salinity can incur a greater energetic cost
305 from increased osmoregulation than lower salinity habitats and reduce growth rates. However,
306 Kammerer et al. (2015) showed that growth was not affected by elevated salinities as high as 10
307 psu in short term lab rearing studies. Diet data for fish rearing in different salinity zones in the
308 fall and winter months exhibited similar stomach fullness indices, but diet composition did vary,
309 and thus prey quality across the salinity zones may be an additional important driver of Delta
310 Smelt growth (*S.Slater unpublished data*). Nutritional indices did not appear to be significantly
311 different among low and high salinity habitats in this study, but there was some tendency for
312 RNA/DNA ratios and TAG concentrations to be slightly higher in freshwater (*S. Teh et al*
313 *unpublished data*). Contaminant exposure may be an additional stressor reducing growth rates in
314 higher salinity habitats, however there is limited information on contaminant exposures collected
315 at appropriate spatial and temporal scales to correspond with otolith growth rates. Hammock et
316 al. (2015) found evidence of nutritional stress in Delta Smelt collected in Suisun Bay, but
317 histological evidence of contaminant effects was greater in the Cache-Liberty region of the North
318 Delta, thus it is less likely reduced growth in high salinity habitats was driven by contaminant
319 stress.

320 Adaptive management of the Low-Salinity Zone habitat for Delta Smelt, as prescribed by the
321 biological opinion issued for continued operation of the state and federal pumping facilities, call
322 for increased freshwater flows in the fall to increase growth and subsequent fecundity of Delta
323 Smelt. While, it appeared that Delta Smelt growth and fecundity was elevated during a naturally

324 high freshwater outflow in the fall of 2011, such a response may not be directly inferred if
325 freshwater flows were artificially increased during a dry year. Environmental conditions
326 throughout the year influence the growth and production of eggs in Delta Smelt, thus if fish are
327 experiencing poor habitat conditions during a dry spring and summer, it is uncertain whether
328 increased flows in fall are going to produce similar results as measured in 2011. Moreover,
329 warm and dry springs have been associated with poor recruitment to the juvenile stage, thus few
330 fish may benefit from an artificially induced fall flow, and given the financial and political cost
331 of such an action, the result may not be quantifiable if new few are around to benefit. We
332 recommend such an action be utilized when high spring flows support recruitment of juveniles,
333 but summer and fall conditions are anticipated to be poor without a management action.

334 Using the Delta Smelt life cycle model produced by the IEP-MAST predicted growth and
335 fecundity would be higher in the fall and winter of 2011. Using otolith increment accretion rates
336 of marginal otolith increments deposited during the Fall Midwater Trawl Survey and back-
337 calculated fall increment accretion for fish collected during the Spring Kodiak Trawl, we showed
338 that growth was elevated in the fall of 2011 compared to 2012-2014. Moreover, increased fall
339 growth was associated with increased fecundity. Based on these data we recommend careful
340 management of freshwater outflows not only during the critical fall months, but through-out the
341 year to support growth and reproduction of Delta Smelt. The 2011-2012 years provide the best
342 example of why we suggest environmental conditions need to be maintained year round. The
343 conditions in 2011 resulted in high production of offspring in the spring of 2012, with the 20-mm
344 survey index reaching abundance levels similar years prior the pelagic organism decline.
345 However, by mid-June abundance declined rapidly, as we entered the first year of a significant
346 drought period, thus any benefits the Delta Smelt may gain from increased fall flows could be
347 easily wiped out by poor conditions the following spring. Management of Delta Smelt requires a
348 life-cycle approach, linking the habitat attributes and environmental drivers form life-stage to
349 life-stage much like the model put forth by the IEP-MAST synthesis report.

350

351

352

353 Table 1. Fall habitat and Delta Smelt response predictions in response to elevated outflow.

354

Fall Low-Salinity Habitat 2011-(2012-14)	
Conceptual Model Tier & Variable	September - December
Landscape Attributes	
Proximity to Ocean	↑
Proximity to Water Projects	↓
Environmental Drivers	
Flows	↑
Water Diversions	↑
Air Temperature	↓
Water Clarity	↑
Invasive Clam Grazing	↔
MSS Abundance	↓
LMB Abundance	↑
Contaminant Loading	↓
WWTP Ammonium	↓
Food Production	↑
Habitat Attributes	
Water Temperature	↓
Position of LSZ	↓
Area of LSZ	↑
Harmful Algal Blooms	↔
Toxicity	↓
Food Availability	↑
Predation Risk	↓
Entrainment Risk-Projects	↓ or ↑
Entrainment Risk- Small Diversions	↓ or ↑
Delta Smelt Responses	
Abundance	↑
Distribution	↑
Life History Diversity	↑
Growth	↑
Fecundity	↑

355

356

357

358 Table 2. Fall Midwater Trawl Survey samples sizes for growth and life history

	September	October	November	December
2011	37	45	26	125
2012	1	21	11	9
2013	4	2	3	8
359	2014	3	0	27

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377 Table 3. GLM model results for marginal otolith accretion.

378

Coefficients:	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	142.0	32.6	4.357	0.00002 ***
Otolith.Length	-0.0015	0.0001	-12.658	<0.00001 ***
Year	-0.0679	0.0162	-4.191	0.00004 ***
FallSalinity[T.1]	0.0038	0.0543	0.070	0.94460
FallSalinity[T.2]	0.0662	0.0523	1.264	0.20700
FallSalinity[T.3]	-0.0218	0.0576	-0.379	0.70530
FallSalinity[T.4]	-0.0154	0.0586	-0.263	0.79270
FallSalinity[T.5]	-0.2466	0.1221	-2.020	0.04420 *
FallSalinity[T.6]	-0.2269	0.0967	-2.347	0.01950 *
FallSalinity[T.7]	-0.2703	0.1228	-2.201	0.02840 *

(Dispersion parameter for gaussian family taken to be 313.2745)				
Null deviance: 168855 on 323 degrees of freedom				
Residual deviance: 98368 on 314 degrees of freedom				
AIC: 2793.4				

379

380

381

382

383

384

385

386

387

388

389

390

391 Table 4. The proportion of total catch rearing in different salinity habitats during the fall based
392 on otolith strontium isotope ratios.

393

	Fresh	0.5-1.0	1.1-1.5	1.6-2.0	2.1-2.5	2.6-3.0	3.1-4.0	4.1-5.0	5.1-6.0	Total
2012	22%	9%	22%	17%	22%	5%	3%	0%	0%	194
2013	48%	20%	16%	6%	6%	1%	2%	1%	1%	197
2014	24%	21%	25%	10%	11%	4%	3%	2%	0%	155
394	2015	12%	24%	33%	15%	13%	3%	1%	0%	112

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410 Table 5. GLM model results for Fall otolith accretion for Delta Smelt collected during the Spring
411 Kodiak Trawl Survey 2012-2015 (2011-2014 Yearclasses).

412

Coefficients:	Estimate	Std. Error	t value	Pr(> t)	
(Intercept)	308.2	18.320	16.822	<0.00001	***
Otolith.Length	-0.0012	0.000	-12.772	<0.00001	***
Year	-0.1525	0.009	-16.727	<0.00001	***
FallSalinity[T.1]	0.0939	0.026	3.683	0.00025	***
FallSalinity[T.2]	0.0813	0.023	3.489	0.000519	***
FallSalinity[T.3]	0.0120	0.029	0.416	0.677566	
FallSalinity[T.4]	0.0664	0.026	2.507	0.012405	*
FallSalinity[T.5]	0.0462	0.046	1.001	0.317317	
FallSalinity[T.6]	0.0551	0.056	0.986	0.324396	
FallSalinity[T.7]	-0.0722	0.135	-0.535	0.592541	
FallSalinity[T.8]	0.0575	0.252	0.228	0.819619	

(Dispersion parameter for gaussian family taken to be 0.2237039)

Null deviance: 295.43 on 657 degrees of freedom
Residual deviance: 144.74 on 647 degrees of freedom
AIC: 894.92

413

414

415

416

417

418

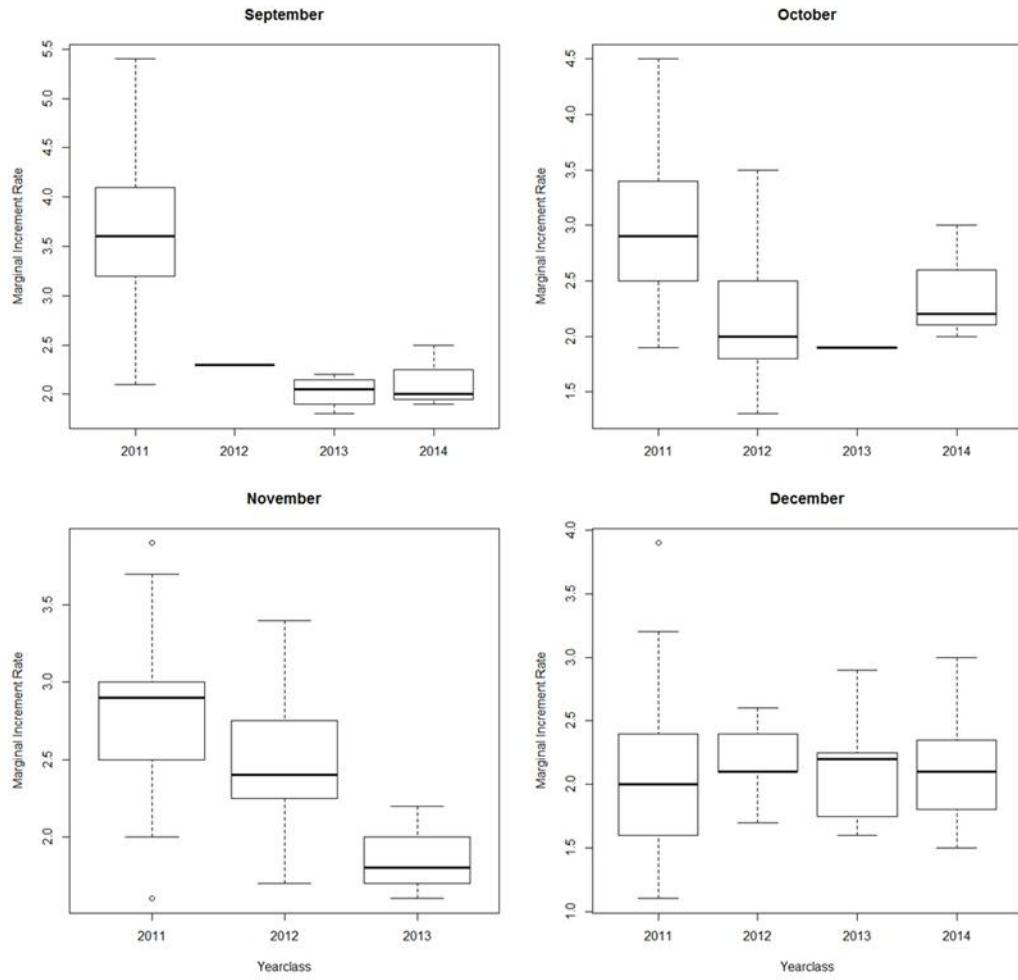
419

420

421

422

423


424

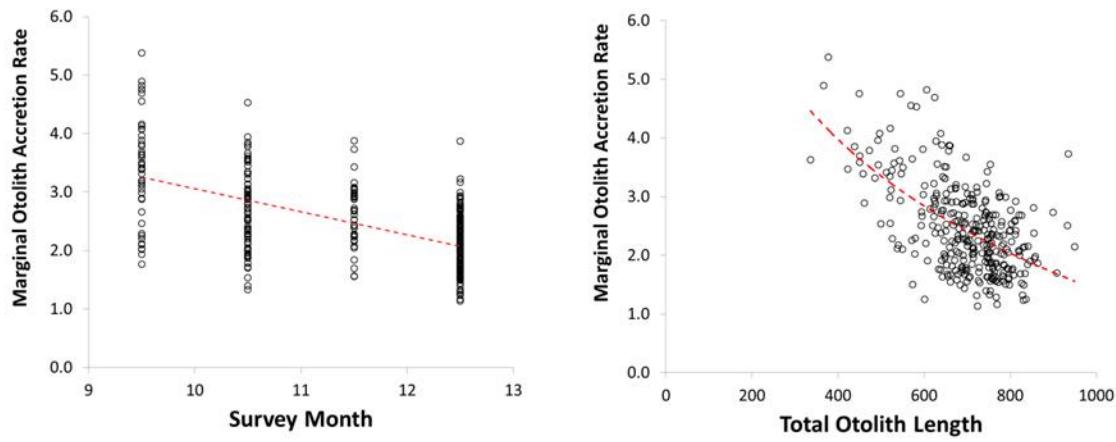
425 Table 6. Linear regression model results for fecundity with fish fork-length, Fall otolith
426 accretion rate and the life history phenotype (0 = freshwater resident, 1 = migratory)

427

Coefficients:	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	-3212.36	384.014	-8.365	< 0.0001 ***
fork_length	64.451	5.794	11.124	< 0.0001 ***
Fall.g.d	176.582	46.91	3.764	0.000294 ***
migration[T.1]	-174.893	75.492	-2.317	0.02274 *

Residual standard error: 290.9 on 92 degrees of freedom				
(5 observations deleted due to missingness)				
Multiple R-squared: 0.6234,		Adjusted R-squared: 0.6111		
F-statistic: 50.75 on 3 and 92 DF, p-value: < 2.2e-16				

428


429

430 Figure 1. Otolith marginal increment accretion rate ($\mu\text{m}/\text{day}$) for Delta Smelt collected in the
 431 Fall Midwater Trawl from September to December in 2011-2014.

432

433

434

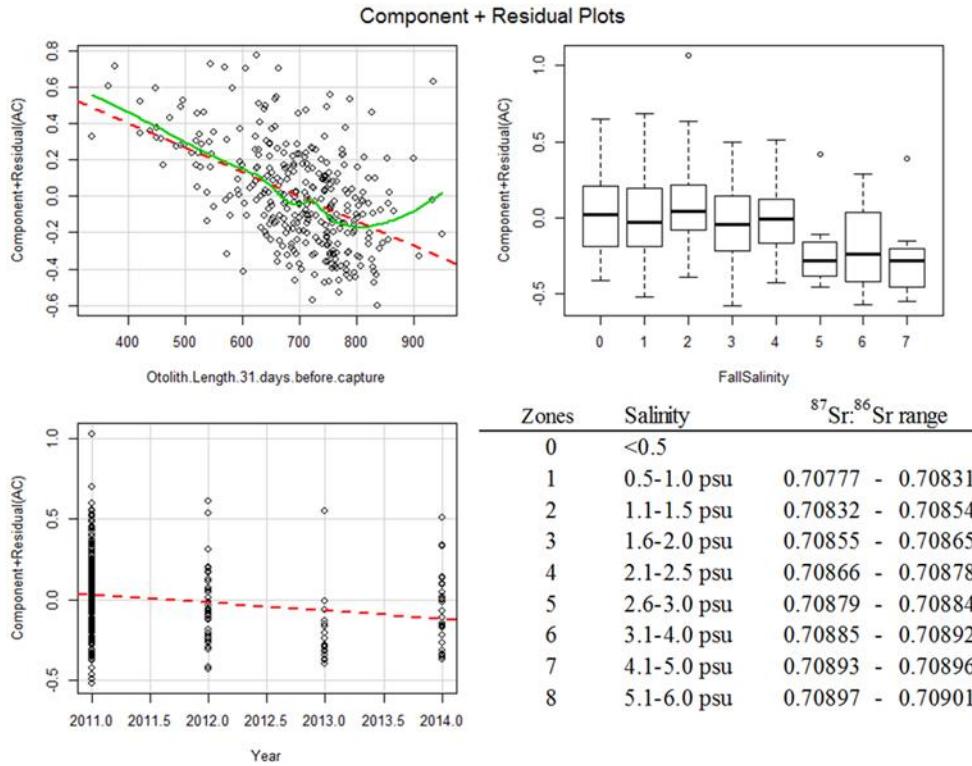
435

436

437 Figure 2. Marginal otolith increment accretion rate ($\mu\text{m/day}$) for Delta Smelt collected in the
 438 Fall Midwater Trawl Survey by Survey Month (left) reflecting the decreasing growth over time
 439 (and age) and by the total otolith length (right) depicting the ontogenetic influence of fish size.

440

441


442

443

444

445

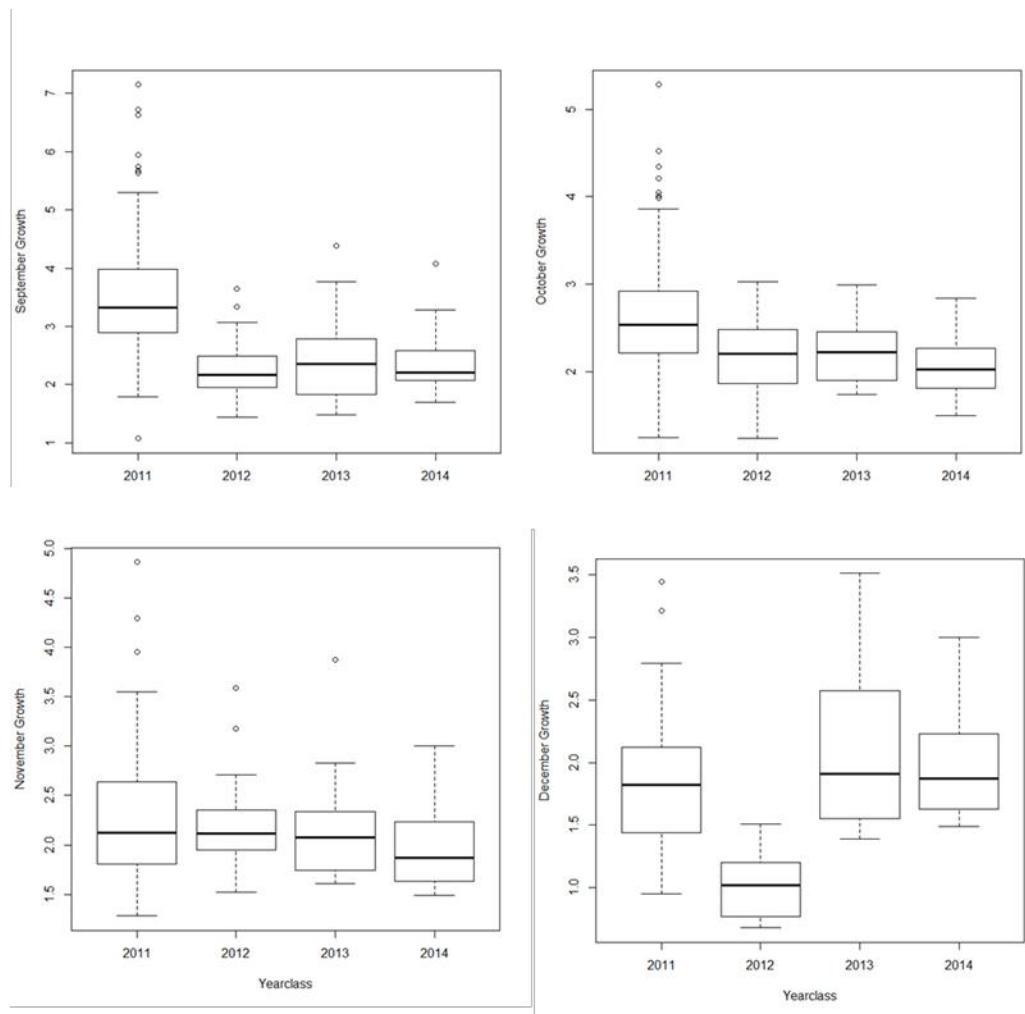
446

447

448 Figure 3. GLM results for marginal otolith accretion accounting for the otolith size ontogenetic
 449 effect, and fall salinity habitat derived from otolith strontium isotope ratios and the year effect.

450

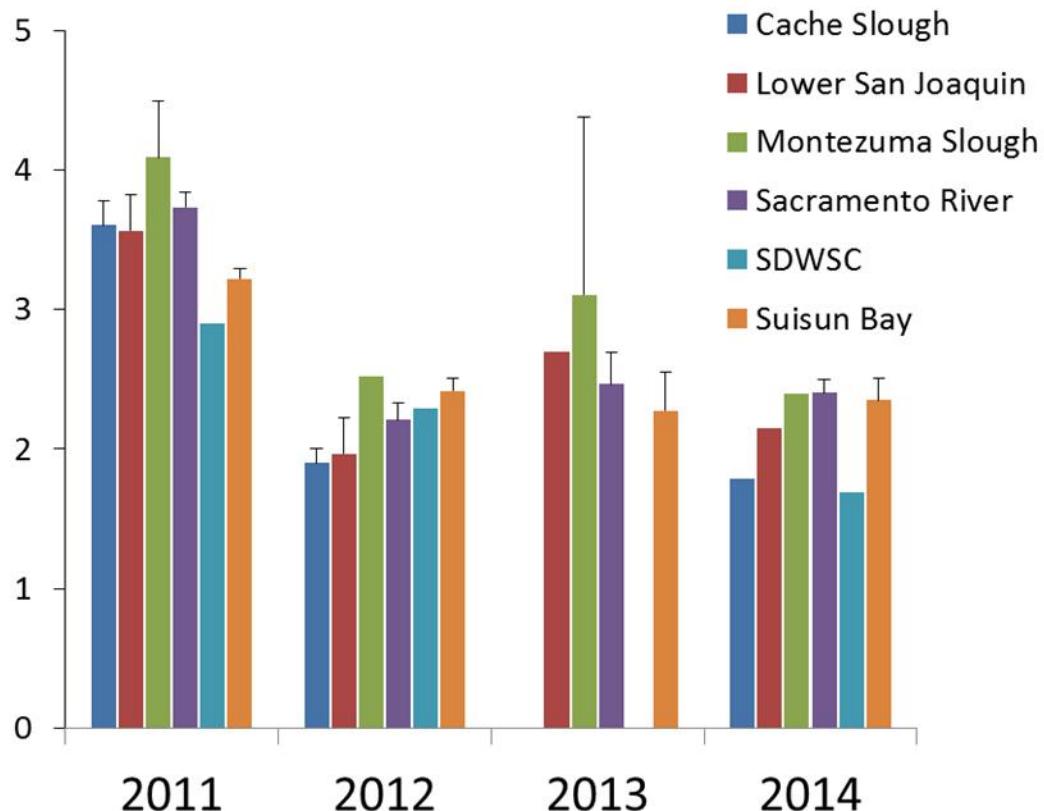
451


452

453

454

455


456

457

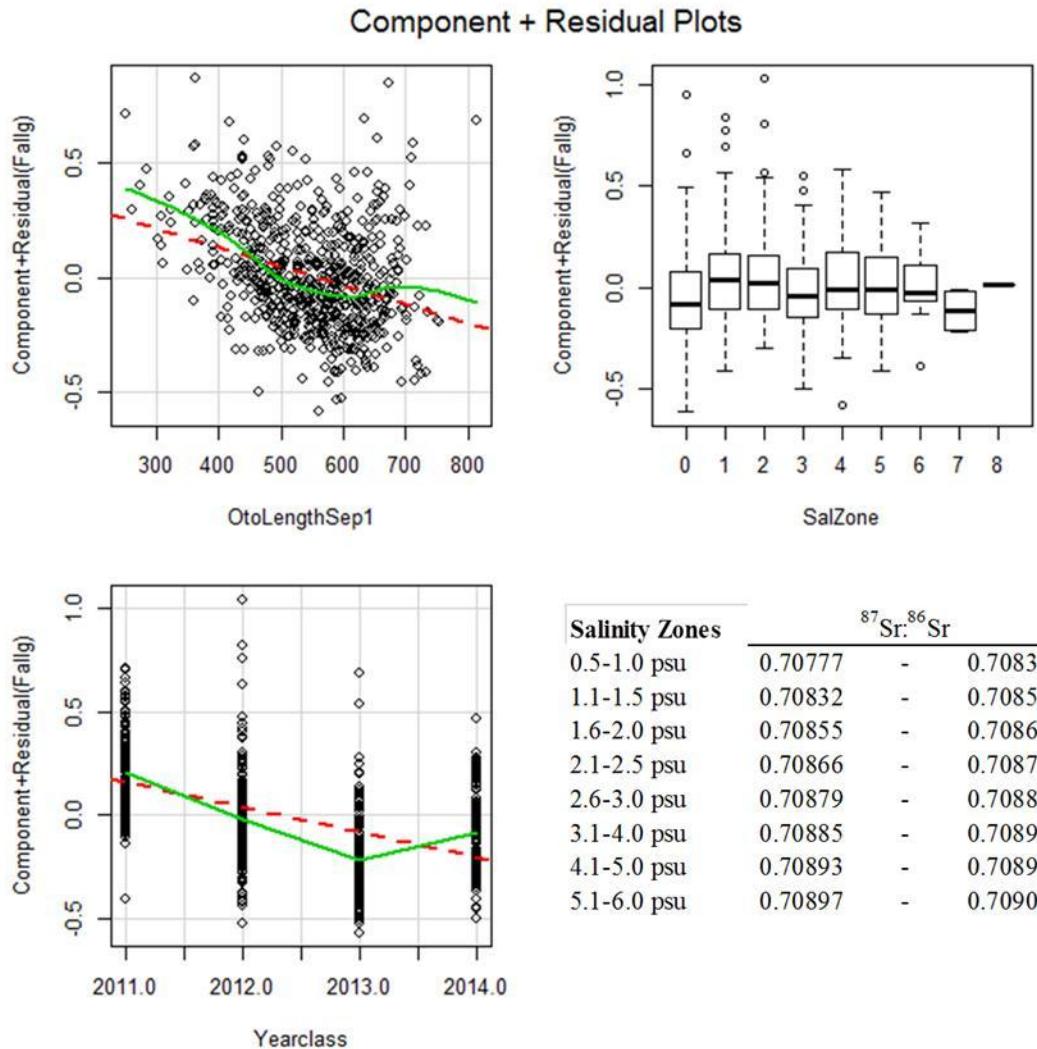
458 Figure 4. Boxplots of otolith accretion rate ($\mu\text{m/day}$) accreted during the months of Sept-Dec.
 459 Data are from fish collected during the Fall Midwater Trawl 2011-2014.

460

461

462

463 Figure 5. Bar plot of mean otolith accretion rate ($\mu\text{m/day}$) for the month of September. Data are
 464 from the Fall Midwater Trawl 2011-2014. Error bars depict $\pm 1\text{SE}$. Bars without error bars had
 465 only single individuals capture and analyzed for growth. Table under figure is the sample size
 466 for each bar. No statistical test were attempted with this data.

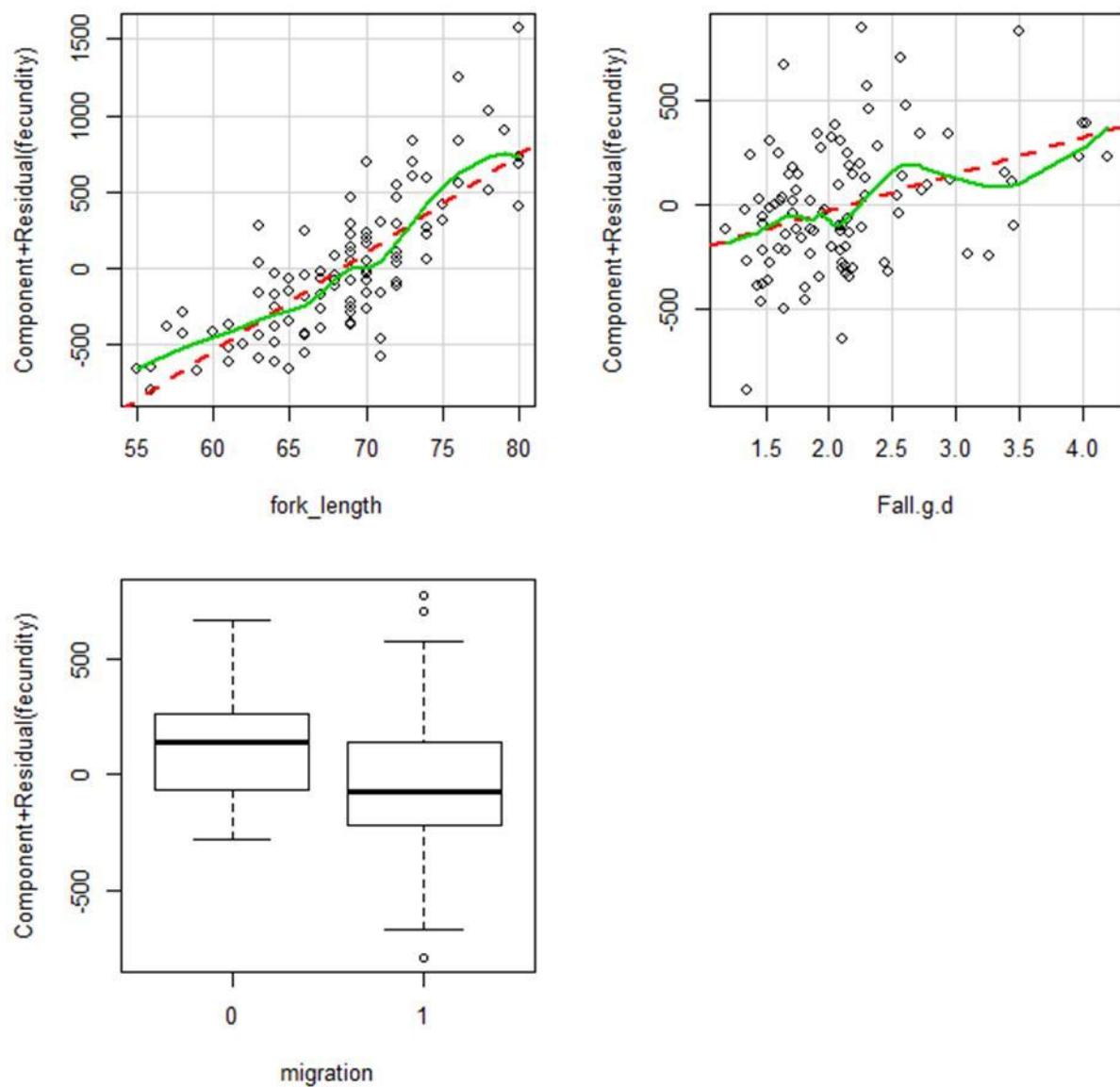

467

468

469

470

471


472

473 Figure 6. GLM results for Fall otolith accretion accounting for the otolith size ontogenetic
 474 effect, and fall salinity habitat derived from otolith strontium isotope ratios and the year effect.

475

476

Component + Residual Plots

477

478 Figure 7. Linear regression model results for Fecundity with fork-length (mm), fall otolith
479 accretion (Fall.g.d) and life history phenotype (0 = freshwater resident, 1 = migratory) as
480 predictor variables.

481

482

483

484

485

486 **REFERENCES**

487

488 Baxter, R., and coauthors. 2010. Interagency Ecological Program 2010 Pelagic Organism
489 Decline Work Plan and Synthesis of Results. Interagency Ecological Program.

490 Bennett, W. A. 2005. Critical assessment of the Delta Smelt population in the San Francisco
491 Estuary, California. *San Francisco Estuary and Watershed Science* 3(2).

492 Bennett, W., and J. R. Burau. 2015. Riders on the Storm: Selective Tidal Movements Facilitate
493 the Spawning Migration of Threatened Delta Smelt in the San Francisco Estuary. *Estuaries and*
494 *Coasts* 3:826–835.

495 Brown, L.R., Baxter, R., Castillo, G., Conrad, L., Culberson, S., Erickson, G., Feyrer, F., Fong,
496 S., Gehrts, K., and Grimaldo, L., Herbold, B., Kirsch, J., Mueller-Solger, A., Slater, S., Sommer T.,
497 Souza, K., and E.V. Nieuwenhuyse 2014. Synthesis of Studies in the Fall Low Salinity Zone of
498 the San Francisco Estuary, September-December 2011. US Geological Survey Scientific
499 Investigations Report **5041**: 136.

500 Brown, L. R., W. A. Bennett, R. W. Wagner, T. Morgan-King, N. Knowles, F. Feyrer, D. H.
501 Schoellhamer, M. T. Stacey, and M. Dettinger. 2013. Implications for Future Survival of Delta
502 Smelt from Four Climate Change Scenarios for the Sacramento–San Joaquin Delta, California.
503 *Estuaries and Coasts* 36:754–774.

504 California Fish and Game Commission. 2009. Office of Administrative Law's Notice ID
505 #Z2009-0106-06. Office of Administrative Law's File ID #2009-1119-01S. Section 670.5, Title
506 14, CCR, Uplist Delta Smelt from threatened to endangered species status. December 21, 2009.
507 [cited 2011 Jun 09]. Available from: http://www.fgc.ca.gov/regulations/2009/#670_5ds

508

509 Chapman, B.B., Brönmark, C., Nilsson, J.Å., and Hansson, L.A. 2011. The ecology and
510 evolution of partial migration. *Oikos* **120**(12): 1764-1775.

511 Conrad, L and co-authors. 2014. Assessment of 2013-2014 Drought Effects on the Sacramento-
512 San Joaquin Delta Aquatic Ecosystem. Report to the Interagency Ecological Program:
513 Management Analysis and Synthesis Team and the California Department of Fish and Wildlife
514 Drought Operations Team. December 2014.

515 Dege, M., and L. R. Brown. 2003. Effect of outflow on spring and summertime distribution and
516 abundance of larval and juvenile fishes in the upper San Francisco Estuary. Pages 49–66
517 American Fisheries Society Symposium.

518 Dettinger, M. D., F. M. Ralph, T. Das, P. J. Neiman, and D. R. Cayan. 2011. Atmospheric rivers,
519 floods, and the water resources of California. *Water* 3:445-478.

520 Dettinger, M., and D. R. Cayan. 2014. Drought and the California Delta - A matter of extremes.
521 *San Francisco Estuary and Watershed Science* 12(2).

522 Drought Operations Plan 2014. Central Valley Project and State Water Project Drought
523 Operations Plan and Operational Forecast. April 2, 2014-November 15, 2014

524 Duffy, Elisabeth J., and David A. Beauchamp. "Rapid growth in the early marine period
525 improves the marine survival of Chinook salmon (*Oncorhynchus tshawytscha*) in Puget Sound,
526 Washington." *Canadian Journal of Fisheries and Aquatic Sciences* 68.2 (2011): 232-240.

527 Federal Register. 1993. Endangered and threatened wildlife and plants; determination of
528 threatenedstatus for the delta smelt. Friday, March 5, 1993. Rules and regulations. Fed Regist
529 [cited 2008 Jul 03];58(42):12854–12864. Available from:
530 http://ecos.fws.gov/docs/federal_register/fr2235.pdf
531

532 Federal Register. 2010. Endangered and threatened wildlife and plants; 12-month finding on a
533 petition to reclassify the Delta Smelt from threatened to endangerd throughout its rang. Fed
534 Regist [cited 2010 Apr 07];75(66):17667–17680. Available from:
535 <http://www.gpo.gov/fdsys/pkg/FR-2010-09-22/pdf/2010-23571.pdf>
536

537 Feyrer, F., Nobriga, M.L., and Sommer, T.R. 2007. Multidecadal trends for three declining fish
538 species: habitat patterns and mechanisms in the San Francisco Estuary, California, USA.
539 *Canadian journal of fisheries and aquatic sciences* **64**(4): 723-734.

540 Gillanders, B.M., Izzo, C., Doubleday, Z.A., and Ye, Q. 2015. Partial migration: growth varies
541 between resident and migratory fish. *Biology letters* **11**(3): 20140850.

542 Gleason, T.R., and Bengtson, D.A. 1996. Size-selective mortality of inland silversides: Evidence
543 from otolith microstructure. *Transactions of the American Fisheries Society* **125**(6): 860-873.
544

545 Hobbs, J.A., Yin, Q.-z., Burton, J., and Bennett, W.A. 2005. Retrospective determination of natal
546 habitats for an estuarine fish with otolith strontium isotope ratios. *Marine and Freshwater*
547 *Research* **56**(5): 655-660

548 Hobbs JA, Burton JE, Bennett WA (2007). Modification of the biological intercept model to
549 account for ontogenetic effects in laboratory-reared delta smelt (*Hypomesus*
550 *transpacificus*). *Fishery Bulletin* 105:28-37.

551 Hobbs, J.A., Lewis, L.S., Ikemiyagi, N., Sommer, T., and Baxter, R.D. 2010. The use of otolith
552 strontium isotopes (87Sr/86Sr) to identify nursery habitat for a threatened estuarine fish.
553 *Environmental Biology of Fishes* **89**(3-4): 557-569.

554 Honey, K., and coauthors. 2004. IEP long-term fish monitoring program element review. I. E. P.
555 o. t. S.-S. J. D. o. t. S.-S. J. Estuary, editor.

556

557 Houde, E., and Hoyt, R. 1987. Fish early life dynamics and recruitment variability. Am. Fish.
558 Soc. Symp. **2**.

559

560 IEP Management, Analysis, and Synthesis Team. 2015. An updated conceptual model for delta
561 smelt: our evolving understanding of an estuarine fish h. Page 205. Technical Report 90,
562 January, 2015. Interagency Ecological Program for the San Francisco Bay/Delta Estuary.
563 http://www.water.ca.gov/iep/docs/Delta_Smelt_MAST_Synthesis_Report_January%202015.pdf

564 Jonsson, B., Duffy, E.J., and Beauchamp, D.A. 2011. Rapid growth in the early marine period
565 improves the marine survival of Chinook salmon (*Oncorhynchus tshawytscha*) in Puget Sound,
566 Washington. Canadian Journal of Fisheries and Aquatic Sciences **68**(2): 232-240.

567 Komoroske, L. M., R. E. Connion, K. M. Jeffries, and N. A. Fangue. 2015. Linking
568 transcriptional responses to organismal tolerance reveals mechanisms of thermal sensitivity in a
569 mesothermal endangered fish. Molecular ecology.

570 Komoroske, L. M., R. E. Connion, J. Lindberg, B. S. Cheng, G. Castillo, M. Hasenbein, and N.
571 A. Fangue. 2014. Ontogeny influences sensitivity to climate change stressors in an endangered
572 fish. Conservation Physiology 2:cou008.

573 Kuivila, K.M., and G.E. Moon. 2004. Potential exposure of larval and juvenile delta smelt to
574 dissolved pesticides in the Sacramento-San Joaquin Delta, California. In American Fisheries
575 Society Symposium, 229-242: American Fisheries Society.

576

577 Lindberg, J. C., G. Tigan, L. Ellison, T. Rettinghouse, M. M. Nagel, and K. M. Fisch. 2013.
578 Aquaculture Methods for a Genetically Managed Population of Endangered Delta Smelt. North
579 American Journal of Aquaculture **75**:186–196.

580 Mac Nally, Ralph, et al. "Analysis of pelagic species decline in the upper San Francisco Estuary
581 using multivariate autoregressive modeling (MAR)." Ecological Applications **20**.5 (2010): 1417-
582 1430.

583 Mahardja, B., N. Ikemiyagi, and B. Schrier. 2015. Evidence for increased utilization of the Yolo
584 Bypass by Delta Smelt. Interagency Ecological Program Newsletter. V28, N1.13-18.

585 Maunder, Mark N., and Richard B. Deriso. "A state-space multistage life cycle model to
586 evaluate population impacts in the presence of density dependence: illustrated with application to
587 delta smelt (*Hypomesus transpacificus*). Canadian Journal of Fisheries and Aquatic Sciences
588 **68**.7 (2011): 1285-1306.

589 Merz, J.E., Hamilton, S., Bergman, P.S., and Cavallo, B. 2011. Spatial perspective for delta
590 smelt: a summary of contemporary survey data. California Fish and Game **97**(4): 164-189.

591 Miller, Jessica A., et al. "Disentangling bottom-up and top-down effects on survival during early
592 ocean residence in a population of Chinook salmon (*Oncorhynchus tshawytscha*)."*Canadian*
593 *Journal of Fisheries and Aquatic Sciences* 70.4 (2013): 617-629.

594 Miller, William J., et al. "An investigation of factors affecting the decline of delta smelt
595 (*Hypomesus transpacificus*) in the Sacramento-San Joaquin Estuary."*Reviews in Fisheries*
596 *Science* 20.1 (2012): 1-19.

597 Morrongiello, J.R., and Thresher, R.E. 2015. A statistical framework to explore ontogenetic
598 growth variation among individuals and populations: a marine fish example. *Ecological*
599 *Monographs* **85**(1): 93-115.

600

601 Murphy, D.D., and Hamilton, S.A. 2013. Eastward Migration or Marshward Dispersal:
602 Exercising Survey Data to Elicit an Understanding of Seasonal Movement of Delta Smelt. *San*
603 *Francisco Estuary and Watershed Science* **11**(3).

604 Nobriga, M. L., T. R. Sommer, F. Feyrer, and K. Fleming. 2008. Long-term trends in
605 summertime habitat suitability for delta smelt (*Hypomesus transpacificus*). *San Francisco*
606 *Estuary and Watershed Science* 6.

607 Rose, Kenneth A. "Why are quantitative relationships between environmental quality and fish
608 populations so elusive?." *Ecological Applications* 10.2 (2000): 367-385.

609 Rose, Kenneth A., et al. "Individual-based modeling of Delta Smelt population dynamics in the
610 upper San Francisco Estuary: I. Model description and baseline results." *Transactions of the*
611 *American Fisheries Society* 142.5 (2013): 1238-1259.

612 Rose, Kenneth A., et al. "Individual-based modeling of Delta Smelt population dynamics in the
613 upper San Francisco Estuary: II. Alternative baselines and good versus bad years." *Transactions*
614 *of the American Fisheries Society* 142.5 (2013): 1260-1272.

615 Secor, D.H. 1999. Specifying divergent migrations in the concept of stock: the contingent
616 hypothesis. *Fisheries Research* **43**(1): 13-34.

617 Slater, S. B., and R. D. Baxter. 2014. Diet, prey selection and body condition of age-0 Delta
618 Smelt, *Hypomesus transpacificus*, in the upper San Francisco Estuary. *San Francisco Estuary and*
619 *Watershed Science* 12(3):23.

620 Sogard, S.M. 1997. Size-selective mortality in the juvenile stage of teleost fishes: a review.
621 *Bulletin of Marine Science* **60**(3): 1129-1157Swanson, C., and J. J. Cech. 2000. Comparative
622 environmental tolerances of threatened delta smelt (*Hypomesus transpacificus*) and introduced
623 wakasagi (*H. nipponensis*) in an altered California estuary. *Oecologia* 123:384–390.

624 Sommer, T., and Mejia, F. 2013. A Place to Call Home: A Synthesis of Delta Smelt Habitat in
625 the Upper San Francisco Estuary. *San Francisco Estuary and Watershed Science* **11**(2).

626 Sommer, T., Mejia, F.H., Nobriga, M.L., Feyrer, F., and Grimaldo, L. 2011. The spawning
627 migration of delta smelt in the upper San Francisco Estuary. *San Francisco Estuary and*
628 *Watershed Science* **9**(2).

629 Sommer, T., Armor, C., Baxter, R., Breuer, R., Brown, L., Chotkowski, M., Culberson, S.,
630 Feyrer, F., Gingras, M., and Herbold, B. 2007. The collapse of pelagic fishes in the upper San
631 Francisco estuary: El colapso de los peces pelágicos en la cabecera del estuario San Francisco.
632 *Fisheries* **32**(6): 270-277.

633 Swanson, C., and J. J. Cech. 2000. Comparative environmental tolerances of threatened delta
634 smelt (*Hypomesus transpacificus*) and introduced wakasagi (*H. nipponensis*) in an altered
635 California estuary. *Oecologia* **123**:384–390.

636 Swain, D. L., and coauthors, editors. 2014. The extraordinary California drought of 2013/2014:
637 Character, context, and the role of climate change, volume *Bulletin of the American*
638 *Meteorological Society*.

639 Thomson, James R., et al. "Bayesian change point analysis of abundance trends for pelagic fishes
640 in the upper San Francisco Estuary." *Ecological Applications* **20**.5 (2010): 1431-1448.

641 U.S. Bureau of Reclamation, 2012, Adaptive management of fall outflow for delta smelt
642 protection and water supply reliability: U.S. Bureau of Reclamation, Sacramento, Calif.,
643 http://deltacouncil.ca.gov/sites/default/files/documents/files/Revised_fall_X2_Adaptive_MgmtPlan_EVN_06_29_2012_final.pdf.

644

645 U.S. Fish and Wildlife Service, 2010a, 2008, CVP/SWP coordinated operations delta smelt fall
646 habitat action adaptive management program implementation plan: Sacramento, Calif., U.S. Fish
647 and Wildlife Service, 54 p.
648 http://deltacouncil.ca.gov/sites/default/files/documents/files/DRAFT_FHA_AMP_Plan_v2.pdf.

649

650 U.S. Fish and Wildlife Service, 2008, Formal Endangered Species Act consultation on the
651 proposed coordinated operations of the Central Valley Project and State Water Project:
652 Sacramento, Calif., U.S. Fish and Wildlife Service, 410 p.,
653 http://www.fws.gov/sfbaydelta/documents/swp-cvp_ops_bo_12-15_final_ocr.pdf.

654 Werner, I., L.A. Deanovic, V. Connor, V. de Vlaming, H.C. Bailey, and D.E. Hinton. 2000.
655 Insecticide-caused toxicity to *Ceriodaphnia dubia* (CLADOCERA) in the Sacramento–San
656 Joaquin River delta, California, USA. *Environmental Toxicology and Chemistry* **19**: 215-227.

657

658 Weston, D.P., A.M. Asbell, S.A. Lesmeister, S.J. Teh, and M.J. Lydy. 2014. Urban and
659 agricultural pesticide inputs to a critical habitat for the threatened delta smelt (*Hypomesus*
660 *transpacificus*). *Environmental Toxicology and Chemistry* **33**: 920-929.

661
662
663 Zuur, A., Ieno, E.N., Walker, N., Saveliev, A.A., and Smith, G.M. 2009. Mixed effects models
664 and extensions in ecology with R. Springer Science & Business Media.
665
666
667
668
669
670
671
672