

RECLAMATION

Managing Water in the West

USBR ROC on LTO

Delta Biology and Management Overview

January 19, 2018

U.S. Department of the Interior
Bureau of Reclamation

Delta Fish Population Declines



Figure 4. Fall Midwater Trawl Threadfin Shad annual abundance indices (all ages), 1967-2017.

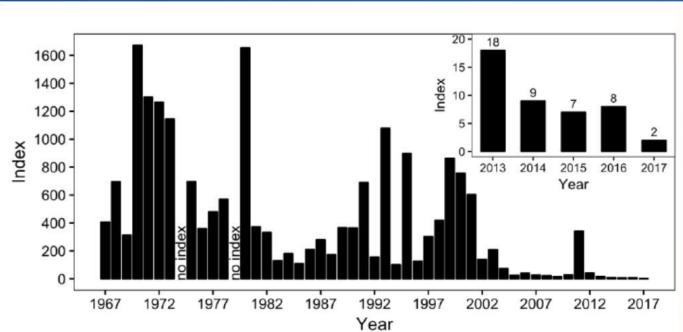


Figure 1. Fall Midwater Trawl Delta Smelt annual abundance indices (all ages), 1967-2017.

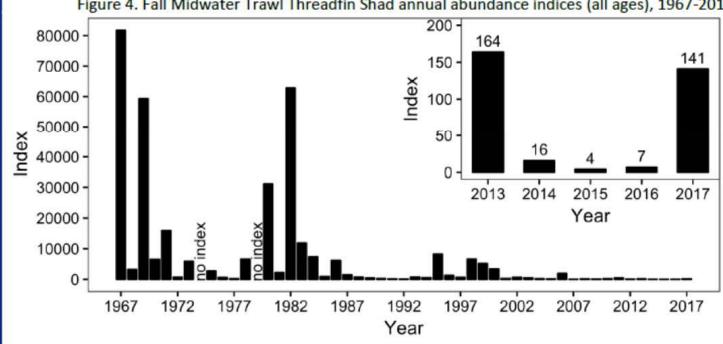


Figure 3. Fall Midwater Trawl Longfin Smelt annual abundance indices (all ages), 1967-2017.

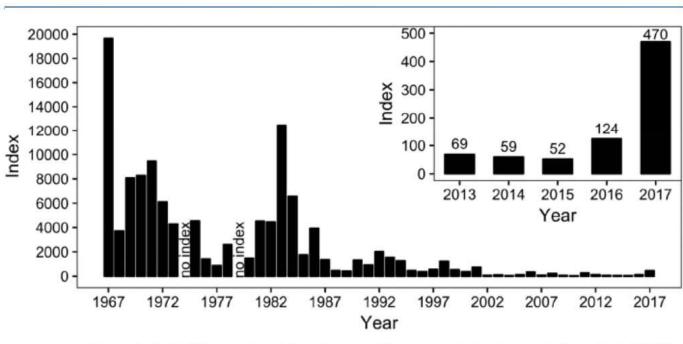
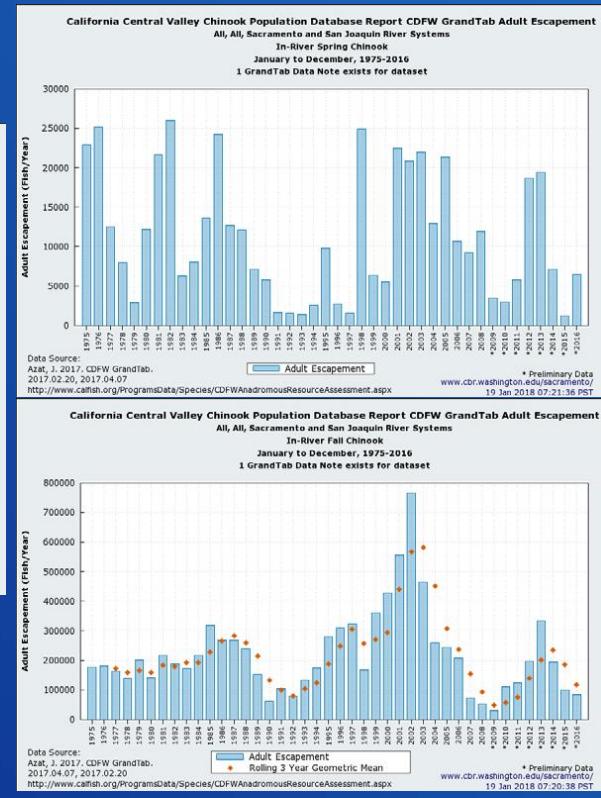
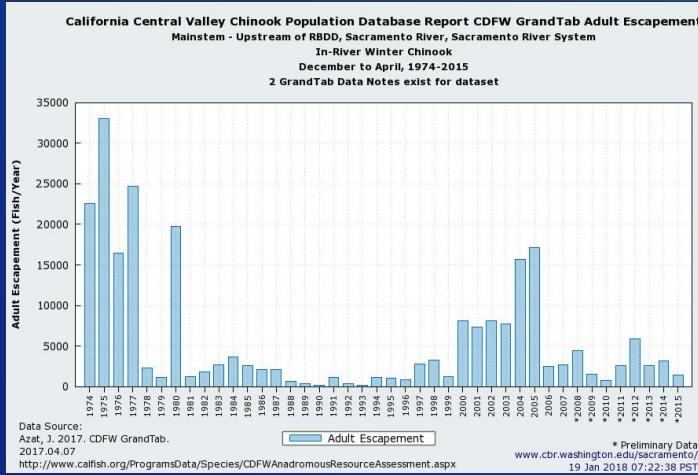




Figure 2. Fall Midwater Trawl Age-0 Striped Bass annual abundance indices, 1967-2017.

Salmon Populations Too.

DRAFT, Subject to Revision

RECLAMATION

CVP/SWP Delta Biology Overview

- **The Estuary Past**

- Floodplains
- Tidal Islands
- Distributary Rivers

Conceptual
Models

- **Species of Interest**

- Residents
- Anadromous

Monitoring
Information

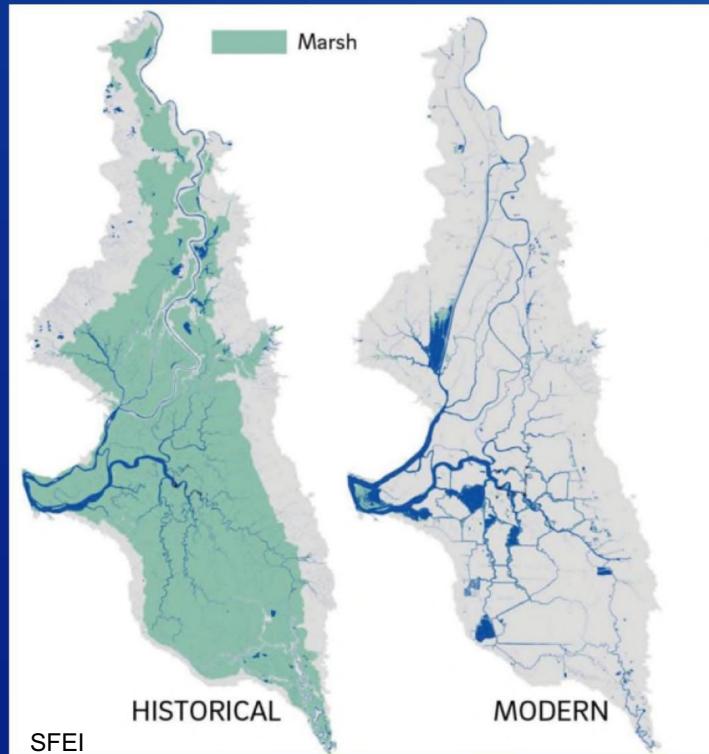
- **Challenges**

- Loss of Habitat
- Altered Flow
- Water Quality
- Nonnative Species
- Hatcheries and Harvest Management

Programs and
Projects

Historic Delta regions

Northern, Central, and Southern



DRAFT, Subject to Revision

RECLAMATION

Habitat Loss

>95% of wetlands lost

Plans

Tidal Marsh and Floodplain Restoration Action in NMFS and USFWS BiOps

- 8,000 acres of tidal marsh
- 17,000 acres of floodplain

Delta Smelt Resiliency Strategy

- 9,000 acres

Salmon Resiliency Strategy

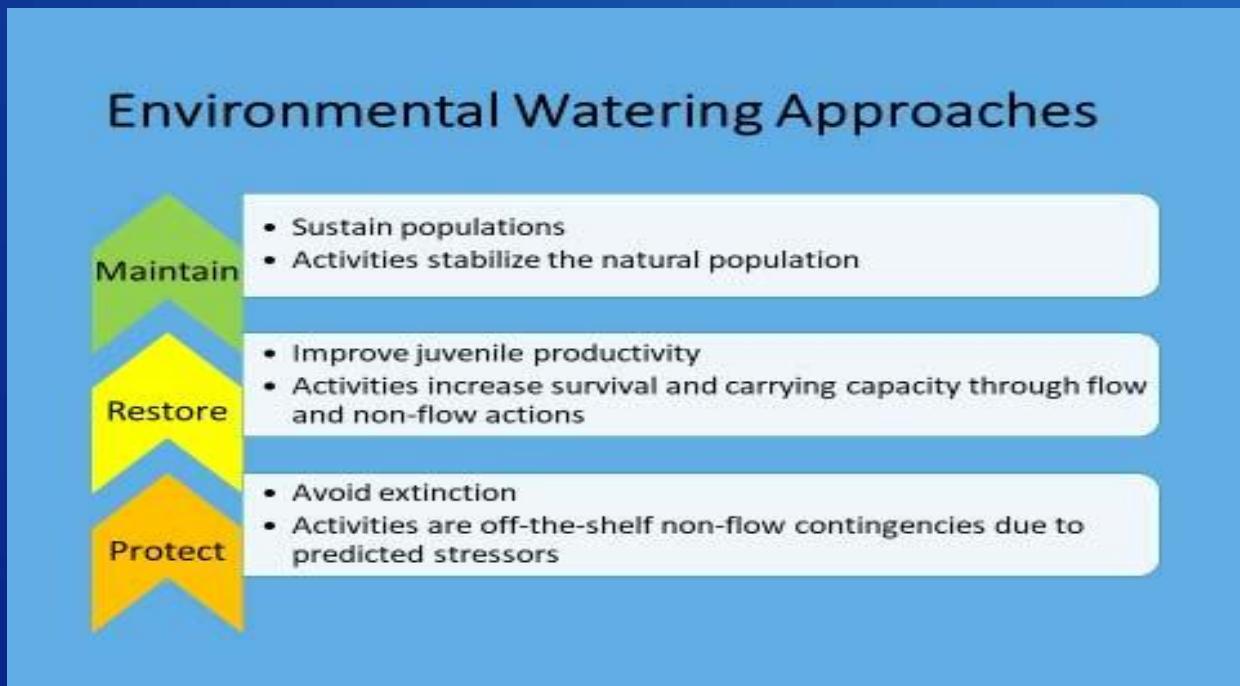
- 11,000 acres

Implementation Groups

- Fisheries Restoration Program
- EcoRestore Program
- Delta Conservancy

RECLAMATION

DRAFT, Subject to Revision


Challenges Confronting Fish and Water Management in the Bay-Delta

1. Loss of Habitat
2. Altered Flows
3. Ecosystem Water Quality
4. Non-native Species
5. Hatcheries and Harvest Management

Each affects ESA-listed species based on scale and scope?

- What is the magnitude/duration/exposure to each challenge?
- What viability parameter is affected (ie: Population size, growth, distribution, diversity)?

Can activities be implemented through time to Protect, Restore, and Maintain species in the Bay-Delta?

DRAFT, Subject to Revision

RECLAMATION

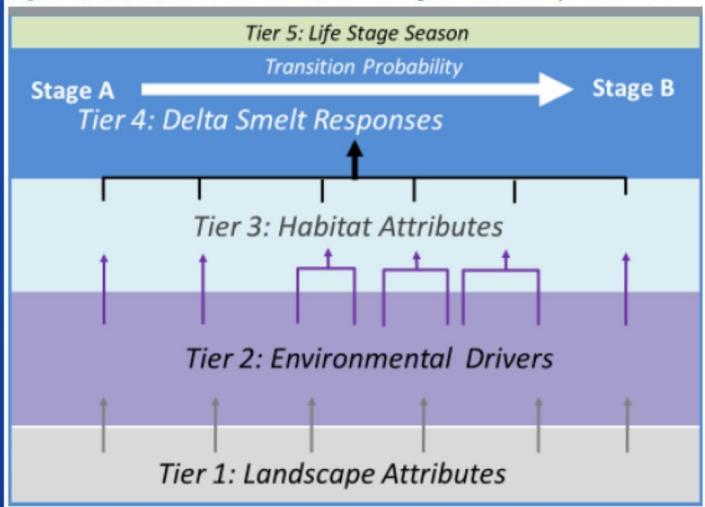
Delta Smelt Conceptual Models

Habitat Attributes

- Entrainment Risk
- Predation Risk
- Food Availability
- Transport Direction
- Size and Location of LSZ

Environmental Drivers

- Contaminants
- Food Production
- Predators
- Flows
- Turbidity
- Water Diversions


DRAFT, Subject to Revision

INTERAGENCY ECOLOGICAL PROGRAM, MANAGEMENT, ANALYSIS, AND SYNTHESIS TEAM

An updated conceptual model
of Delta Smelt biology:
our evolving understanding of an estuarine fish

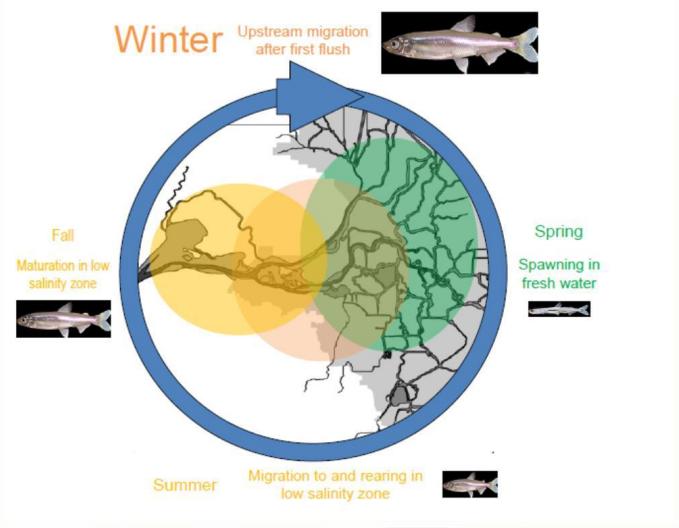
Figure 10. Framework for the Delta Smelt life stage season conceptual models.

RECLAMATION

What might be considered for protecting, restoring, and maintaining DSM?

Habitat Attributes

- Entrainment Risk
- Predation Risk
- Food Availability
- Transport Direction


Environmental Drivers

- Contaminants
- Food Production
- Predators
- Flows
- Turbidity
- Water Diversions

- Export Reductions
- Seasonal Outflow Augmentation
- Aquatic Weed Control
- N Delta Food Web Enhancement
- Reoperation of Suisun Marsh Salinity Gates
- Sediment Supplementation in LSZ
- Spawning Habitat Augmentation
- Suisun Marsh Food Web Enhancement
- Management Wetland Food Web Enhancement
- Adjusting Fish Salvage Operations
- Stormwater Discharge Management
- Rio Vista Research Station
- Delta Smelt Habitat Restoration
- Franks Track Restoration
- Conservation Propagation
- Conservation Supplementation

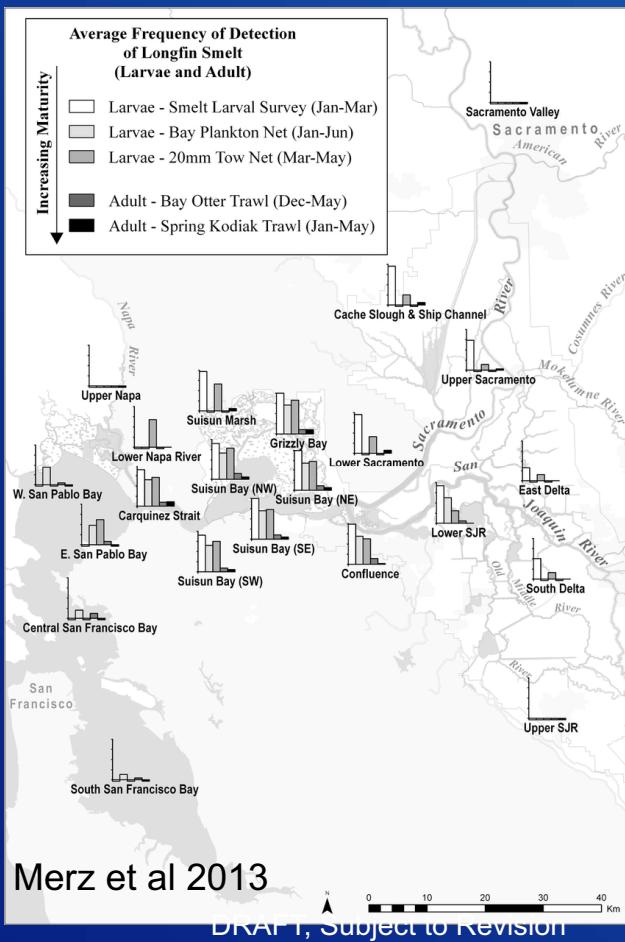

Where might be considered for protecting, restoring, and maintaining DSM?

Figure 5. Simplified life cycle of Delta Smelt (modified from Bennett 2005). Colors correspond to different seasons with the low salinity zone changing position with season.

- Export Reductions
- Seasonal Outflow Augmentation
- Aquatic Weed Control
- N Delta Food Web Enhancement
- Reoperation of Suisun Marsh Salinity Gates
- Sediment Supplementation in LSZ
- Spawning Habitat Augmentation
- Suisun Marsh Food Web Enhancement
- Management Wetland Food Web Enhancement
- Adjusting Fish Salvage Operations
- Stormwater Discharge Management
- Rio Vista Research Station
- Delta Smelt Habitat Restoration
- Franks Track Restoration
- Conservation Propagation
- Conservation Supplementation

Longfin Smelt Conceptual Models

DRERIP model described
stressors

Work describing linkages of

1. Fish responses
2. habitat attributes
3. environmental drivers

would benefit evaluation of
Delta challenges and
opportunities

Potential IEP project in 2018
(?)

RECLAMATION

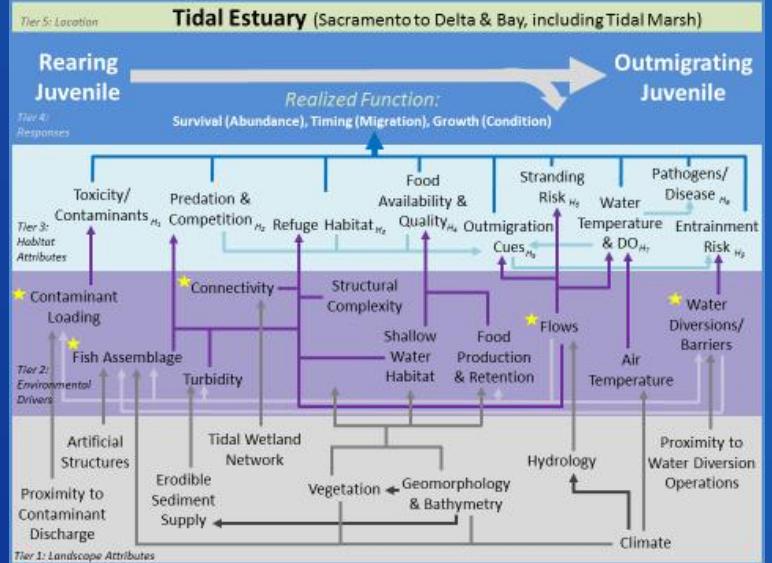
Winter-run Chinook Conceptual Model

Habitat Attributes

- Entrainment Risk
- Predation Risk
- Food Availability
- Transport Direction
- Outmigration Cues

Environmental Drivers

- Contaminants
- Fish Assemblage
- Flows
- Water Diversions
- Barriers


DRAFT, Subject to Revision

NOAA Technical Memorandum NMFS

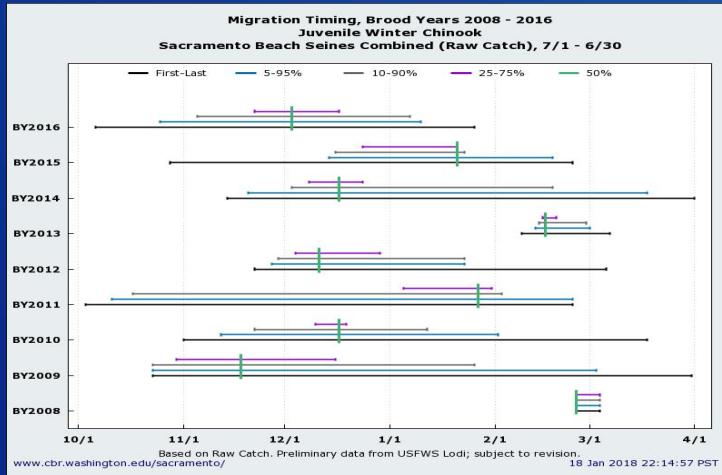
AUGUST 2017

SCIENTIFIC FRAMEWORK FOR ASSESSING FACTORS INFLUENCING ENDANGERED SACRAMENTO RIVER WINTER-RUN CHINOOK SALMON (*Oncorhynchus tshawytscha*) ACROSS THE LIFE CYCLE

RECLAMATION

What might be considered for protecting, restoring, and maintaining WRCS?

Habitat Attributes


- Entrainment Risk
- Predation Risk
- Food Availability
- Transport Direction
- Outmigration Cues

Environmental Drivers

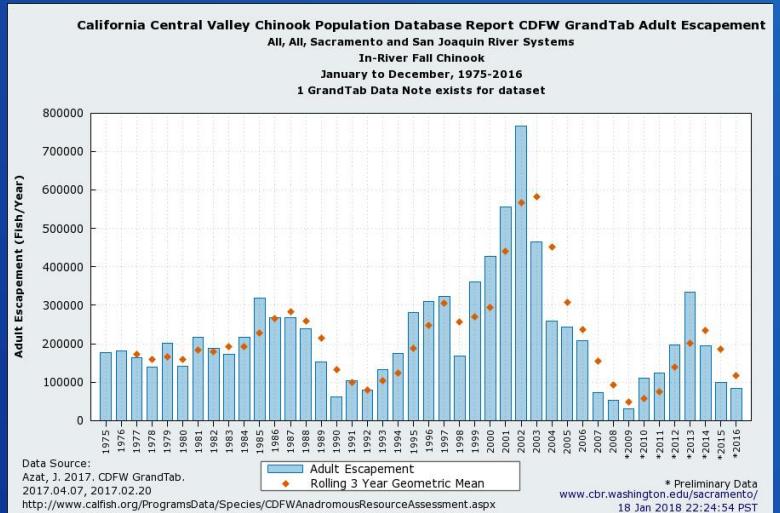
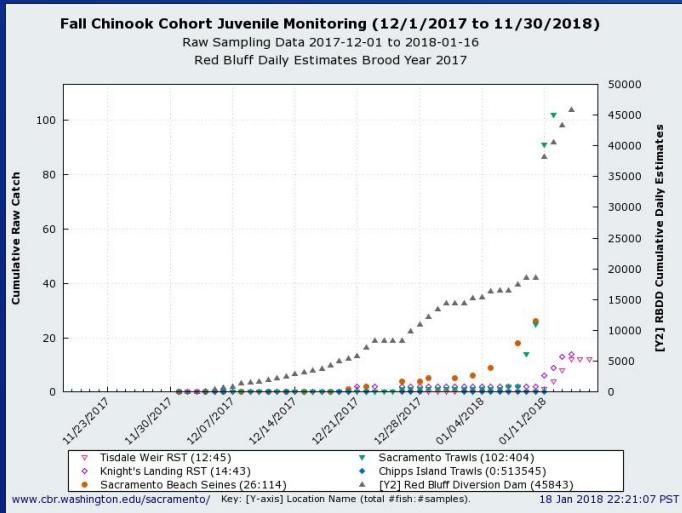
- Contaminants
- Fish Assemblage
- Flows
- Water Diversions
- Barriers

- Re-operate Delta Cross Channel
- Export Reductions
- Old and Middle River Reverse Flow Management
- Spring I:E Ratio Management
- Upgrade CVP/SWP Fish Collection, Holding, and Release Facilities
- Reduce Predator Hot Spots
- Restore Tidal Wetlands
- Restore Floodplain Habitats
- Restore Riparian Habitats
- Install South Delta/ HOR Barriers
- Install N. Delta/Georgiana S. Barriers
- Improve In-Delta Diversion Fish Screens
- Manage Winter/Early Spring Delta Conditions to Improve Survival

When might be considered for protecting, restoring, and maintaining WRCS?

<http://www.cbr.washington.edu/sacramento>

BroodYear	Sampling Dates (MM/DD/YYYY)									
	First	5%	10%	25%	50%	75%	90%	95%	Last	
2017 ¹ YTD	11/21/2017									01/10/2018
Average (2008 - 2016)	11/21	12/02	12/07	12/23	01/02	01/11	01/31	02/16	03/05	
Median (2008 - 2016)	11/01	11/20	11/29	12/10	12/17	12/29	01/25	02/23	03/05	
2016	10/05/2016	10/24/2016	11/04/2016	11/21/2016	12/02/2016	12/16/2016	01/06/2017	01/09/2017	01/25/2017	
2015	10/28/2015	12/14/2015	12/16/2015	12/24/2015	01/20/2016	01/22/2016	02/17/2016	02/23/2016		
2014	11/14/2014	11/20/2014	12/03/2014	12/08/2014	12/17/2014	12/24/2014	02/17/2015	03/17/2015	03/31/2015	
2013	02/08/2014	02/12/2014	02/13/2014	02/14/2014	02/15/2014	02/18/2014	02/27/2014	02/28/2014	03/06/2014	
2012	11/21/2012	11/26/2012	11/28/2012	12/03/2012	12/10/2012	12/28/2012	01/22/2013	01/22/2013	03/05/2013	
2011	10/03/2011	10/11/2011	10/17/2011	01/04/2012	01/26/2012	01/30/2012	02/02/2012	02/23/2012	02/23/2012	
2010	11/01/2010	11/12/2010	11/22/2010	12/10/2010	12/17/2010	12/19/2010	01/11/2011	02/01/2011	03/17/2011	
2009	10/23/2009	10/23/2009	10/23/2009	10/30/2009	11/18/2009	12/16/2009	01/25/2010	03/02/2010	03/30/2010	
2008	02/24/2009	02/24/2009	02/24/2009	02/24/2009	02/24/2009	03/03/2009	03/03/2009	03/03/2009	03/03/2009	
BroodYear	First	5%	10%	25%	50%	75%	90%	95%	Last	
	Sampling Dates (MM/DD/YYYY)									



- Re-operate Delta Cross Channel
- Export Reductions
- Old and Middle River Reverse Flow Management
- Spring I:E Ratio Management
- Upgrade CVP/SWP Fish Collection, Holding, and Release Facilities
- Reduce Predator Hot Spots
- Restore Tidal Wetlands
- Restore Floodplain Habitats
- Restore Riparian Habitats
- Install South Delta/ HOR Barriers
- Install N. Delta/Georgiana S. Barriers
- Improve In-Delta Diversion Fish Screens
- Manage Winter/Early Spring Delta Conditions to Improve Survival

RECLAMATION

Other salmonids have less synthesized information on scope, but lots of information on scale.

- Spring-run Chinook
- Central Valley steelhead

	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	NMFS
Juvenile winter-run													
Juvenile spring-run													
Juvenile steelhead													

<http://www.cbr.washington.edu/sacramento>
DRAFT, Subject to Revision

RECLAMATION

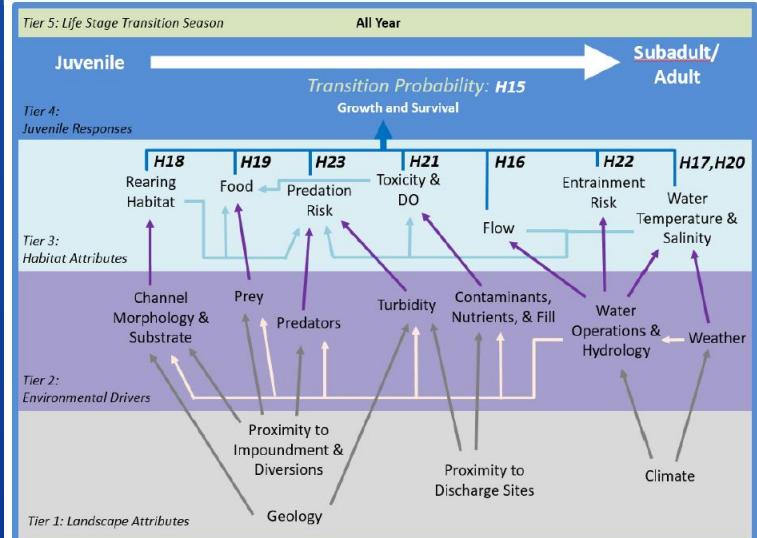
Green Sturgeon Conceptual Model

Habitat Attributes

- Rearing Habitat
- Flow
- Entrainment Risk
- Water Temperature
- Salinity

Environmental Drivers

- Contaminants
- Predators
- Water Operations
- Channel Substrate


DRAFT, Subject to Revision

NOAA Technical Memorandum NMFS

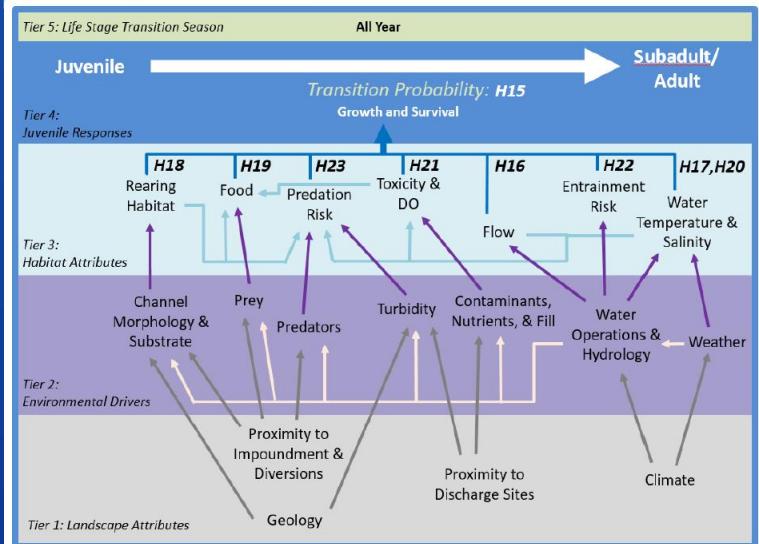
SEPTEMBER 2017

IMPROVED FISHERIES MANAGEMENT THROUGH LIFE STAGE MONITORING: THE CASE FOR THE SOUTHERN DISTINCT POPULATION SEGMENT OF NORTH AMERICAN GREEN STURGEON AND THE SACRAMENTO-SAN JOAQUIN RIVER WHITE STURGEON

RECLAMATION

Green Sturgeon Conceptual Model

Information on scope and scale is quite limited for green sturgeon in the Bay-Delta.


DRERIP model described stressors and periodicity

NOAA Technical Memorandum NMFS

SEPTEMBER 2017

IMPROVED FISHERIES MANAGEMENT THROUGH LIFE STAGE MONITORING: THE CASE FOR THE SOUTHERN DISTINCT POPULATION SEGMENT OF NORTH AMERICAN GREEN STURGEON AND THE SACRAMENTO-SAN JOAQUIN RIVER WHITE STURGEON

DRAFT, Subject to Revision

RECLAMATION

New Information Confronting Fish and Water Management in the Bay-Delta

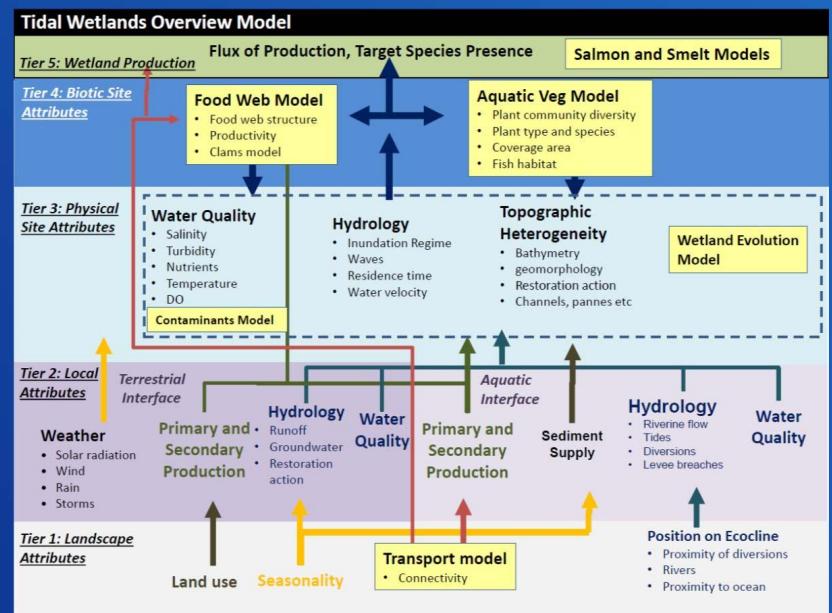
1. Loss of Habitat
2. Altered Flows
3. Ecosystem Water Quality
4. Non-native Species
5. Hatcheries and Harvest Management

Each affects ESA-listed species based on scale and scope?

- What is the magnitude/duration/exposure to each challenge?
- What viability parameter is affected (ie: Population size, growth, distribution, diversity)?

Habitat Restoration IEP Generating Monitoring and Planning Information

Tidal Wetland Suite of
Conceptual Models (DFW)


Tidal Wetland Monitoring Pilot
Project (DFW)

Yolo Bypass Fish Monitoring
Project (DWR)

Liberty Island Fish Survey
(USFWS)

Physical and Biological Drivers of
Fish Populations to Inform
Habitat Restoration Actions
(USGS)

DRAFT, Subject to Revision

RECLAMATION

Altered Flow

How do individual fish movements influence population responses?

Advancement in PTM models

- Smelt entrainment (3D UnTRIM)
- Salmonid ePTM (DSM2)

Enhanced Distributional Monitoring

- Enhanced D. Smelt Monitoring
- Enhanced Acoustic Telemetry for Salmon Monitoring

Operational Experiments?

- Utilizing physical models now, can we get ePTM models integrated into toolbox for adaptive management?
- Do our observations from enhanced monitoring fit our predictions?

Ecosystem Water Quality

Nutrients, Flows, and Habitat

Recent and Planned Experiments

- North Delta Food Web Enhancement
- Suisun Marsh Salinity Gate Reoperation
- Fish Food on Floodplain Farm Fields

Can models be developed from these activities to predict benefits and risks of larger actions?

- Sacramento Deepwater Ship Channel
- Yolo Bypass Juvenile Salmonid Habitat Restoration Program

Non-native species Predation and competition in a novel environment

- **Recent scientific synthesis (DSP) and new information (SWFSC South Delta studies)**
- **Improved information about predation in association with Clifton Court (SWP) and Primary Channel (CVP)**
- **Predation experiments and modeling for CVPIA structured decision model moving forward.**
- **Increased interest in monitoring programs (IEP)**

Hatcheries and Harvest Management

- Salmonids
 - Production of salmonids becoming more dependent on hatcheries following drought.
 - CWT data is demonstrating Delta planting of hatchery salmonids can improve survival but affects straying
 - Fall flows through the Delta may influence salmonid straying between San Joaquin and Sacramento Rivers
- Delta Smelt
 - Delta smelt conservation supplementation beyond ongoing efforts may not be implemented before species rarity affects broodstock collection

What would you do?

-Lots of lists, do you have new ideas?

Why would you do it?

- How does it affect scale and scope?**
- Do the habitat attributes affect fish responses directly or indirectly?**
- Are the environmental drivers affected by CVP/SWP?**

When would you do it?

- Can it be accomplished in a year?**
- Can it be accomplished in 5 years?**