Modeling thermal tolerance of winter run
Chinook salmon embryos
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t's getting warmer...
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How will species respond?




Thermal response curves

Lab experiment

Assumes relationship between temperature
and performance in lab holds in nature
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By the time we find out if that is true it’s too late
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Are statistical/descriptive lab derived models of
thermal tolerance predictive in nature?



A case study with Sacramento Winter-run

ESA listed population

Blocked from historic
spawning grounds

Embryos, most sensitive life
stage to temperature

Water release managed to
avoid high embryo mortality

— Temperaturetargets based on
laboratory data




Survival

Distance Downstream from Keswick Dam (miles)

A case study with Sacramento Winter-run
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Mortality rate
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Thermal tolerance model
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Assumptions

* Constantthermal tolerance parameters
throughout embryonic stage

e Other sources of mortality grouped into
background survival parameter

* Temp-dependent mortality occurs only during
embryonic stage



Testing the lab model

Why so bad?

* H1: Factors other then temperature drive
annual variation in survival

* H2: Thermal tolerance in the field differs
from the lab

Test: rerun analysis, but estimate thermal
tolerance parameters using field data
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Lab vs. field
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Lab estimate

Thermal tolerance in the field
3C lower than in the lab!
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Validation

Does the model predict patterns that weren’t used
to fit the model?



Can other data be used to test the extent of
temperature-dependent mortality in embryos?
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Does temperature during embryonic period explain variation in relative
escapement 3 years later?
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Could other factors explain this pattern?

* Temperature-dependent predation

e Flow?



Rearing temperatures at RBDD 15°C (2011,2012) vs. 18-19°C (2014-2015)
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Based on bioenergetics modeling 3-4°C difference in fry rearing temperatures
in 2011 and 2012 vs. 2014 and 2015 would result in ~ 3% difference in ETF
survival (compared to a roughly 30% observed difference)



log(ReplacementRate)

Replacement rate vs. flow
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Marginally significant effect of keswick discharge in only one month (Sept)
P=0.02 r-squared =0.1



Log(replacement rate) = flow(month) + temperature(July-Sept)

Flow Temperature
t value Pr(>|t]) t value Pr(>|t])
Jan -0.37 0.71 -4.28 0.000023
Feb 0.90 0.37 -4.19 0.000034
March 1.39 0.16 -4.17 0.000036
April -1.85 0.07 -4.67  0.000004
May -0.23 0.82 -4.20  0.000032
June -1.12 0.26 -4.48  0.000009
July -1.44 0.15 -4.55  0.000007
Aug -0.76 0.45 -4.37 0.000015
Sept 0.02 0.99 -3.36 0.000830
Oct -1.07 0.28 -4.18  0.000034
Nov -0.50 0.62 -4.10  0.000049

Dec -0.30 0.76 -4.23 0.000027



Can other data be used to test the extent of
temperature-dependent mortality in embryos?
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Temperature and density dependent embryonic survival alone explain
~70% of variation in winter run population dynamics from 1970-2015

The T,,;; estimated from escapement data (11.5°C) not statistically different from
estimate from egg-to-fry survival data (12.0°C)



Fortunately, field data available for winter-run to reality
check lab-derived model
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But for many species, such data does not exist
What mechanism can account for differences in thermal tolerance?



Why might lab and field thermal
tolerance differ

* In redds
— Eggs buried in gravel with low flows

— Eggs surrounded by other eggs, compete for
resources, exposed to waste products

* Typical Chinook egg pocket has 900 eggs



Oxygen limitation?

Climate Change Affects Marine Fishes
Through the Oxygen Limitation of
Thermal Tolerance
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Warming-induced reductions in body size are greater
in aquatic than terrestrial species
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Oxygen limitation?

In embryos?
e Can’tmove
* High mass-specificoxygen demand

 Supplydependentonenvironment
— DO
— Flow



Oxygen concentration

Oxygen limitation?

External dissolved oxygen
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Oxygen concentration

Oxygen limitation?

External oxygen

Internal oxygen

Distance from embryo



Oxygen concentration

Oxygen limitation?

Oxygen demand increases
External oxygen exponentially with temperature

O, demand

300 A >

200 - l/'/'/'
100 -

Rombough 1994

ug02/g/hr

17

7 1
Temperature (C°)

Internal oxygen

o—

Distance from embryo



Mass-transfer theory

Physics wqued out long ago, but - 3
rarely applied Diffusion

Third Edition

Can calculate thermal tolerance
function of flow, DO

Few parameters needed
* Biological (4)
— Temp-dependent metabolic rate (2)

— Critical oxygen tension and egg
conductance (2)

* Physical (2)
— Look upin a textbook

E. L Cussler

" SNORK, JE
2D(4ﬂR2ke (R-P)- N(S) 2

Ucrit = 2/3
2R(“)
D
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Bulk O2 depletion
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Fie. 2—Typical egg pocket in a redd of quinnat salmon Onchorhynchus tshawyisha during excavation,
Mathias River, South lIsland, New Zealand, Mav-June 1974,

Egg pocket




Oxygen concentration at back of egg pocket

Bulk oxygen depletion in egg pocket
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How general is O, limitation in fish embryos?

* Testable predictions
— Maximum egg size decreases with temperature

Egg radius (cm)
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Observed developmental temperature °C
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Summary

Lab derived model of thermal tolerance
not predictive in the field

But, the same model with parameters
fitted to field data explained most of the
variation in egg-to-fry survival

Suggest a reduction in thermal tolerance
in the field compared to lab
— Supported by escapement data

Oxygen limitation hypothesis provides
mechanistic explanation for why thermal
tolerance may not be fixed, but is context
dependnt




