

TRANSCRIPT

NOAA Monthly Media Climate Briefing

November 17, 2022 at 11:00 a.m. EST via MyMeetings

Hosted by NOAA NESDIS Public Affairs

<https://www.noaa.gov/media-advisory/noaa-monthly-us-global-climate-report-call-november-17>

Valerie (Operator):

Welcome and thank you for standing by. At this time, all participants are in a listen-only mode until the question and answer session of today's call. At that time, if you would like to ask a question, you may press star one. Today's conference is being recorded. If you have any objections, you may disconnect at this time. I would now like to turn the meeting over to John Bateman. You may begin.

John Bateman:

All right, good morning and thank you for joining this monthly climate update call, part of the suite of climate services that NOAA provides to government, business, academia, and the public to support informed decision making. I'm John Bateman with NOAA Communications and I'll be facilitating the call today. If you have any additional questions after the conclusion of today's call, my colleague John Leslie and I can both be reached by email at, and I will spell it, nesdis.pa@noaa.gov. That is ndis.pa, for public affairs, @noaa.gov. Today's update will feature two short presentations, three short presentations I should say, followed by an operator assistant question and answer session. A copy of the presentation our speakers will follow can be downloaded from the link in the media advisory.

With that, I will introduce our speakers. The first presenter is Ellen Bartow-Gillies, a climatologist with NOAA's National Centers for Environmental Information, who will provide a summary of the October 2022 U.S. and Global Climate Report, as well as the latest drought monitor update. Our second presenter is Jeff Graschel, hydrologist from NOAA's Lower Mississippi River Forecast Center, who will provide a review of the historic low water levels on the Mississippi River and the current outlook for the next month. Our third speaker is Johnna Infant, a meteorologist at NOAA's Climate Prediction Center who will provide the latest El Nino La Nina update as well as the U.S. temperature, precipitation, and drought outlook for December, January, and February. Our first speaker will be Ellen from NOAA NCEI.

Ellen Bartow-Gillies:

Thanks, John, and thanks to everyone listening in today. Let's move on to slide number two to start by discussing global temperatures for October 2022. The global surface temperature for October was 0.89 degrees Celsius or 1.6 degrees Fahrenheit above the 20th century average. This ranks as the fourth warmest October in NOAA's 143-year record. The past seven Octobers were among the 10 warmest Octobers on record. As you can see from the temperature departures map on the left, temperatures were generally warmer than average as shown by the shades of red across most of Europe, northern and western North America, Northern Asia, Northwestern, Eastern and Southern Africa, and across

parts of Northern Oceania and Southern and Western Asia. Sea surface temperatures or above average across much of the Atlantic, the northern, western and southwestern Pacific and the Mediterranean Sea, as well as parts of the Eastern Indian Ocean.

Looking at the map on the right, we can see from the darkest red shades that parts of Western and Central Europe, Africa, Northwestern North America and Northern Oceania experienced record high October temperatures. Europe actually set a record for its warmest October on record at 2.57 degrees Celsius or 4.63 degrees Fahrenheit above average. More than seven European countries independently reported their warmest Octobers on record. Africa tied 2003 for its third warmest October on record, and Asia and North America each had their sixth warmest Octobers. Overall record warm October temperatures encompassed just over 7% of the world's surface. This is the second highest percentage for the month since 1951. Only October of 2015 had a higher percentage of record warm surface temperatures.

Meanwhile, temperatures were near to cooler than average across parts of southeastern North America, Central South America, Eastern and Central Asia, and Southern Oceania. The Gulf of Mexico, the central Eastern tropical and southeastern Pacific Ocean and parts of the Western Indian Ocean experienced near to cooler than average sea surface temperatures. However, there were no areas with record cold October temperatures this month. Global land only temperatures rank second warmest on record while ocean only temperatures tied 2017 and 2021 to rank as fifth warmest. The Northern Hemisphere had an unusually warm October with a temperature departure that was second highest on record after 2015 and the Northern Hemisphere land only temperature was record warm for the month. The Southern Hemisphere also had a warm October and ranked as the 10th warmest on record.

Now let's move on to slide number three. Earth had its six warmest January to October on record at 0.87 degrees Celsius or 1.57 degrees Fahrenheit above the 20th century average. The 10 warmest January to October periods on record have all occurred since 2010. This 10-month period was characterized by warmer than average conditions across much of North America, Europe, Asia, Northern and Southern Africa, Northern Oceania and Central and Eastern South America. Much of the Atlantic and Northern Western Pacific oceans and parts of the Eastern Indian Ocean had warmer than average year to date temperatures. Near to cooler than average conditions were present across small parts of Central North America, Central Sahara and Africa and Western South America. Consistent with La Niña patterns, the Central and Eastern tropical Pacific and the Southeastern Pacific experienced cooler than average year to date conditions.

The Northern Hemisphere tied 2017 for its fourth warmest year to date, and the Southern Hemisphere had its eighth warmest January to October period in the 143-year record. Of note, Asia had its second warmest year to date, Europe had its third, North and South America, Africa and Asia all had its top 20 year to date period. Looking at the year to date graph, otherwise known as the horse race gap to the right of the slide, we see it's virtually certain that 2022 will be a top 10 warmest year on record. Our calculations find a 95% confidence interval of 2022 as the sixth warmest year on record. There's a less than 2% chance 2022 will be a top five year.

Continuing on to slide number four to look at national temperature conditions for October, we see the contiguous U.S. had an average temperature of 55.3 degrees Fahrenheit, which is 1.2 degrees Fahrenheit above the 20th century average. This ranks in the warmest third of the historical record. Generally, temperatures were above average in New England and from parts of the central and northern plains to the West Coast. For the month of October, as shown in the red and orange hues in the map to the left, Washington ranked warmest on record, Oregon second warmest, Maine sixth warmest and California seventh warmest on record for this period. The October precipitation total for the contiguous U.S. was 1.66 inches, which is a half inch below average, ranking in the driest third of the historical record. Precipitation was generally above average in Montana and across parts of the northeast and southwest and below average across portions of west, the central or northern plains, the Midwest and Southeast.

Remnants of Hurricane Anne contributed to an abundance of precipitation received during the month, resulting in New Jersey ranking 10th wettest on record. On the drier side of things, Florida ranked eighth driest while California and

Minnesota each had their 11th driest October's on record. Moving on to slide number five, the contiguous U.S. had its 13th warmest January to October in the 128-year record at 1.7 degrees Fahrenheit above average. On the map to the left, we see temperatures were above average from the West Coast to the Gulf Coast and from the Gulf up to New England. California ranked third warmest while Oregon ranked sixth warmest on record for this period. Temperatures were near average from the Mississippi Delta to the upper Midwest.

The January to October precipitation total for the contiguous U.S. was 23.19 inches, which is 2.17 inches below average. This ranked as the 15th driest in the historical record. As shown in the green color in the map to the right of the slide, precipitation was generally above average across portions of the southwest, the Mississippi, Tennessee, and Ohio Valley, as well as the northeast. Precipitation was below average across much of the west, central and southern plains and parts of the East Coast during this January to October. California ranked drives on record and Nebraska ranked fourth drive, Nevada eighth driest for this 10th month.

I will use my last minute or so left of time to talk about national drought conditions on slide number six. As of November 17th, this morning, 59.1% of the continuous U.S. was in drought. This is up about 8% from the end of September. Drought conditions generally lessens across parts of the southwest, the southern plains, the Ohio Mississippi River Valley, the Upper Great Lakes region, the Northeast and the Northwest. Although rainfall associated with Hurricane Nicole helped alleviate drought in the southeast and early November, overall the region saw a slight expansion in drought since the end of September. Drought conditions also expanded or intensified across much of the great plains and parts of the Central Rockies. Drought severity lessened slightly in Hawaii, Puerto Rico received spotty showers and remained completely free of dryness and drought for a third consecutive week, and Alaska continued to experience storminess and also remained free of dryness and drought.

I will now hand the presentation over to Jeff Graschel who will talk more in depth about drought in the Mississippi River Valley.

Jeff Graschel:

Thank you, Ellen. Good morning, everyone. The next slide here is on slide seven. This is actually trying to show you the actual tributary for the Mississippi River and it actually covers 41% of the country in drains areas of the Ohio Valley, the upper part of the Mississippi Valley and the Missouri Valley, as well as the Arkansas and White River basins in Oklahoma in Arkansas in the Red River basin further southward. The area of concern that we've had this year has been in the lower part of Mississippi Valley, which is coded in gold or yellow, and this area here is where we've actually had some pretty low water records for this year. The reason why is from the map that Ellen was showing earlier with the drought, we've had pretty good drought conditions over the Midwest Missouri Valley, and then over the last month and a month and a half from September through October, we had very dry conditions over the Ohio Valley and the Tennessee Valley.

So those areas really with all the lack of water that we had over the last several months have caused low water records across the lower part of the Mississippi River. Also, on this map here, most of the drainage that we get for the lower Mississippi River kind of comes from the Ohio and the Tennessee area. About 60% of the water that we have on the Mississippi River is from the rainfall that we get over the Ohio and the Tennessee areas. As you go further westward, the other half of the rainfall that we do get is from the upper Mississippi and the Missouri Basin. When the Ohio and the Mississippi River come together, kind of in that southern part of Illinois, you have about 90% of the water in the Mississippi River. So when it rains in the lower part of Louisiana or Mississippi, that doesn't really help us for the lower part of the Mississippi River. We really have to have rainfall in the Ohio Valley, the upper Mississippi Valley and the Missouri Valley to really help us for the low water conditions that we have on the lower Mississippi River.

Now I'm going to go to the next slide, which is slide eight, and this is going to be giving you a historical stages for Cairo, Illinois. Again, Cairo is where the Ohio and the Mississippi River come together, and this is where most of the flow is and it takes about two to three weeks for that water from Cairo, Illinois to make its way down to New Orleans. But the graph

we're seeing here, those bold lines are showing you what the maximum records are for Cairo and the bold lines on the bottom are the low water records that we have for this location. Then we put several years on this graph, 2022, which is our current year, but then we've also put some of the more modern day low water record events that we've had over the last several years. 1988 was really our year that we had the lowest water across the lower part of the Mississippi River.

The last time we really had low water in our area was really back in 2012, and then we also put the year 2000 on there as well. Those are really the last three modern day events that we've had on the lower part of the Mississippi River to kind of compare the conditions that we have now to what we had in the past. The area that circled there is the area where we actually broke low water records across areas of from Cairo down through Memphis. About mid-October through the later portions of October are when we actually broke a lot of these modern day records. Now, when we look at records, the records that we have are really modern day records. We've got records going back through a couple of hundred years for a lot of locations on the Mississippi River, but because the Mississippi River has changed so much with levees and dams and stuff, it's very hard to compare records from now to records that happened back in the early 1900s to the 1800s.

When we say records were broken during this event, they're really kind of modern day records and we have had locations that have been below that back in the 1800s and early 1900s. But again, it's just like comparing apples to oranges for those records. Really the records that we did have in mid-October were pretty low in exceeded some low water records that we had back in 1988. We will move to the next slide, which is on slide nine, and that really can give you an indication of where those records occurred across the lower part of the Mississippi River. Again, that's kind of the area from Cairo, Illinois southward through the Memphis area and then extended just a little bit south from there into the Greenville, Mississippi area.

That's really the area that was hardest hit with low water conditions across the lower part of the Mississippi River. Areas to the north and south did not get quite as low as what occurred in the mid portions of October in the later portions of October, but certainly low water conditions all on the lower part of the Mississippi River. We will go to slide 10 now, and what I'm showing here is the actual beneficial rainfalls that we had from the remnants of Nicole, the unfortunate damage in Florida, and at least beneficial rainfalls from Nicole actually help low water conditions on the Mississippi River. Since about the mid portions of October, we've actually started to get a little bit more rainfall across the Mississippi Valley and the Missouri Valley over the last month. Then Nicole, with the rainfall amounts of one to almost four inches occurring over parts of Ohio, Kentucky, Tennessee, West Virginia, and the western parts of Pennsylvania, all that rainfall from the remnants of Nicole has actually put a pretty good wave or runoff and higher river conditions on the lower part of the Ohio.

That rainfall and runoff is working its way down the lower part of the Ohio at this time. If we want to switch to the next slide here, which would be slide 11, we can start to see that a little bit in some of our hydrographs. Cairo, Illinois, again, that's where the Ohio and Mississippi come together in the southern part of Illinois, we're actually seeing some pretty significant rises right now. We're anticipating cresting conditions or their highest levels by this time tomorrow, and those levels are about 10 feet higher than what we were experiencing about a week ago. Those levels are actually almost 15 feet higher than the modern day low water records that were occurring back in the middle portions of October.

What we're anticipating right now is peak conditions occurring sometime tomorrow across the Cairo area, and then what we're seeing over the next several weeks are just some recessions and low water conditions as we get into the later portions of November and December. On the right graphic, we run some experimental models that actually include 16 days of future rainfall and what that's giving us an indication is that we may anticipate another event occurring at the later portions of November, beginnings of December that may allow for us to have another rise on the lower parts of the Ohio for that period of time. The bottom line, I guess on this graphic is what we're showing is we're not anticipating any levels being near the low water records that we had back in mid-October, at least through the second week of December at this time.

Fairly good news and stuff as far as what we're seeing on the Mississippi River as to compared what we had back in the mid portions of October. Certainly we'll have to keep an eye on things over the coming weeks and months to see exactly how much rainfall we get in the lower part of the Ohio and the Mississippi River itself. With that, I will conclude and I will turn it over to Johnna.

Johnna Infant:

All right, thank you and good morning, everyone. This is Johnna Infant, meteorologist from the National Weather Service Climate Prediction Center, and I would like to bring your attention to slide 12 of the presentation, which shows the current sea surface temperature observation and the forecast for the El Nino-Southern oscillation or ENSO. The figure on the left shows the current sea surface temperature anomalies in the tropical Pacific. Blue shading on this figure represents areas where sea surface temperatures are below normal and the orange to red areas correspond to areas where the sea surface temperatures are above normal.

The light to medium blue on the map that's found along and surrounding the equator indicates that on average sea surface temperatures are currently below normal and sea surface temperatures in what is called the Nino 3.4 region of the Tropical Pacific are roughly one degree Celsius below normal, which does put us in the La Nina phase of the El Nino-Southern Oscillation. La Nina conditions begin when sea surface temperatures in the Nino 3.4 region fall to below 0.5 degrees Celsius below normal. The chart on the right shows the ENSO forecast issued in November 2022 through June, July, August 2023, and the chart indicates the probability of La Nina, which is shown with the blue bars, neutral conditions, which are shown with the gray bars, or El Nino, which is shown with the red bars for sea surface temperatures in the Nino 3.4 region.

As you can see from the chart, La Nina is favored to continue through the Northern Hemisphere winter and there is a 76% chance in December through February 2022, 2023, and on the odds for La Nina gradually decreased into the northern hemispheric spring with a transition to ENSO neutral favored in February through April 2023, which is a 57% chance. From there, the odds of ENSO neutral increase into late spring before decreasing again into early summer.

Shifting now to slide 13, which represents our monthly outlooks for the month of December, these outlooks represent the probabilities that the mean temperature or total precipitation for the month will be below, near or above normal. The red and orange shading on the map to the left indicates areas where above normal temperatures are the most likely outcome, while the blue shading indicates areas where below normal temperatures are most likely. Then for precipitation on the right, green shading indicates areas where above normal precipitation is most likely and brown shading indicates areas where below normal precipitation is most likely.

Looking first at the map on the left, the red and orange areas in the Southwest and along the East Coast of the U.S. indicate that these regions are favored to have warmer than normal temperatures in December. The area of highest probabilities, which are at 50% to 60% over parts of the southwest is due to agreement among monthly forecast tools as well as dynamical role model predictions for early to mid-December. The blue shading in the North Central U.S. indicates that the region is favored to have cooler than normal temperatures in December, which is consistent with anticipated impacts from La Nina, as well as dynamical model predictions of temperatures from early to mid-December.

Conversely, large coverage of equal chances, the white on the map of above, near and below normal temperatures is depicted across the Western and Central and parts of the interior Eastern U.S., and that is due to a highly variable temperature pattern that's expected in early December, which will restore confidence in the monthly temperature outlook for parts of the U.S. Over the Alaska panhandle, forecast tools are in good agreement and depict elevated probabilities for below normal temperatures and conversely, tools are in good agreement on above normal temperatures for Western mainland Alaska. Despite some dynamical model favoring above normal temperatures across the illusions, equal chances was forecast for this region due to negative sea surface temperature anomalies nearby and a strong cold signal in some of the forecast tools for early to mid-December.

Moving on to precipitation, which is shown in the figure on the left-hand side, the areas of green shading over the Pacific Northwest, Northern and Central Rockies and the Northern High Plains indicates that these regions are favored to have above normal precipitation in December. Conversely, brown shading indicates that below normal precipitation is favored for parts of the Southwest, Central to Southern Great Plains, Gulf Coast and Southeast Line. La Nina composites for November, December, January are the major guidance relied upon for the December precipitation outlook along with dynamical model guidance. Over California, some tools do support a drier outcome, however equal chances was forecast for the state due to a lack of support for monthly dynamical models and a robust wet signal evident in the week three four predictions of precipitation for early to mid-December.

Equal chances is also forecast for the Great Lakes in Ohio Valley where the wet signal associated with La Nina typically occurs later into the winter season, which you'll see on the next slides in the three month forecast. In addition, dynamical models and decadal trends support increased probabilities for above normal precipitation in northwestern Alaska. Although La Nina typically favors dryness for the Alaska panhandle during winter, equal chances was forecast due to weak signal among the dynamical model output.

Now looking further ahead to the three-month period from December 2022 through January 2023, I'd like to bring your attention to slide 14. These outlooks represent the probabilities that the mean temperature total precipitation for this season will be below, near or above normal. In terms of shading, the shading works the same way as the monthly map. Beginning with the map on the left, blue shading in the temperature outlook denotes elevated odds of below normal temperatures over the northern U.S., stretching from the Pacific Northwest to parts of the Western Great Lakes, and that's consistent with La Nina impacts, as well as below normal decadal trends in the North Central U.S., an anomalously positive snow pack. Below normal temperatures are also favored for the Alaska panhandle and southeastern parts of Alaska given strong consistency among available tools, and above normal temperatures, which are shown with the red and orange shading, are more likely over the southwestern U.S. and stretching across the southern U.S. into the northeast.

The highest probabilities for above normal temperatures are found over the Gulf Coast states, and that is where dynamical models expected impacts from La Nina and decadal trends agree. Anomalously high sea surface temperatures and decadal trends along with consistency from dynamical models tilts odds towards above normal over the northeast and over Alaska above normal temperatures are most likely over the northwestern parts of the state. Some tools did favor warming stretching to the south western coast of Alaska, but equal chances are favored due, again, to anomalous sea surface temperatures along the southeast Coast of Alaska, similarly to the monthly outlook.

Then moving on to precipitation, which is shown in the figure on the right-hand side. Above normal precipitation, which is depicted with green shading, is favored over the Pacific Northwest through parts of the northern plains, and that's largely based on composite analyses of La Nina winters. Above normal precipitation is also favored to the Great Lakes and Ohio and Tennessee Valley regions, which is, again, consistent with expected La Nina impacts as well as potential for lake effects snow over the Great Lakes. Brown shading indicates elevated odds of below normal precipitation, and that's favorite over the southern third of the U.S., with the highest probabilities over parts of Southeastern New Mexico and Southern Texas, as well as parts of the Gulf Coast states. This is a typical pattern that is seen during La Nina winters.

Those seasonal forecast tools were slightly drier this month over the state of California. Equal chances is favored for northern parts of the state due to comparatively low [inaudible 00:26:05] scale over in Northern California, as well as tendency towards storminess over Northern California in winter months. Over Alaska, a [inaudible 00:26:13] above normal precipitation is favored over Western Alaska, while enhanced probabilities of below normal precipitation are favored over parts of the south coast.

Finally, turning to the drought outlook on slide 15. The brown areas on the map indicate where drought is currently ongoing and expected to continue, yellow shading on the map indicates areas in which drought development is likely, and then tan shading on the map indicates the area where drought is predicted to remain but improve. Finally, green

areas indicate where drought removal is likely. During the past month, persistently dry and warm conditions for this time of year resulted in development of autumn drought conditions across the plains, Midwest and Southeast. Though drought does remain extensive over the U.S. during early November, a frontal system brought floss of heavy precipitation to northeastern Texas, Arkansas and the middle of the Mississippi Valley, which did spark some relief to lift drought conditions. The winter storm brought widespread snow and ice to the northern plains.

Further east, the remnants of Hurricane Nicole combined with a frontal boundary to bring moisture to parts of the northeast did bring some relief to those areas as well. The drought forecast for December, January, February 2022 through 2023 is influenced by La Nina conditions that are forecasted persist through winter and as seen in this temperature and precipitation outlooks, the seasonal temperature and precipitation outlooks, La Nina events typically lead to drier and warmer conditions along the southern interior of the U.S. and water conditions for the Pacific Northwest, Northern Rockies and Northern Plains, and that's due to a northward displaced [inaudible 00:27:52] storm track.

A favored winter storm track tends to develop as well over the midsouth and Ohio River Valley through interior New England. There is below average precipitation forecast for Southern California and parts of the Southwest, and that does favor drought persistence in these regions, while above average precipitation in the northwest favors areas of drought reduction. Across the northern plains and the Midwest, drought climatology and freezing soils and streams limit the potential for drought improvements before the spring thaw and drought improvements are more likely across the Tennessee and Ohio River Valley associated with the increased precipitation chance.

Continued recharge with chronologically generous precipitation favors continued drought improvements in the Northeast, while dry warm winter conditions across the southern tier favor widespread through development across eastern Texas and the southeast. Drought development is also possible across South Florida, while extremely wet conditions due to hurricanes Anne and Nicole favored winter drought development north of Lake Okeechobee. That is it from the Climate Prediction Center and thank you everyone for your time and back to you, John.

John Bateman:

All right, thanks so much, Johnna. We'll now take specific questions from the call participants. Please be sure to identify who you would like to answer the question if possible, and Valerie, could you please remind the call participants how they can ask a question and then please queue up the first question?

Valerie (Operator):

Yes, if you would like to ask a question, please press star one and record your name unprompted. To withdraw your question, you may press star two. Our first question comes from Craig Miller of PBS Next Avenue. Your line is open.

Craig Miller:

Hi, and as always, thanks for doing this. I guess this is either a Johnna or Ellen question. I'm just interested in ... a despite the fact that we have had two hurricanes, Atlantic hurricanes that made landfall including a monster, what do you make of or how do you account for the sort of overall quietude of the season sort of in defiance of all the indicators?

I'm sorry, did I come through on that?

Johnna Infant:

You did. I was seeing if Ellen would like to answer.

Craig Miller:

Oh, okay.

Ellen Bartow-Gillies:

Johnna, if you have a response to that, I'll let you go first. Otherwise, maybe someone else who's on the NCI team can speak to this question.

Johnna Infant:

I think it's more of an NPEI question.

Speaker 7:

Can we repeat the question because it was cut off on my end.

Craig Miller:

Sure. I was curious how you sort of account for the overall quietude of the Atlantic hurricane season, the two that we had, notwithstanding one big one, and sort of in defiance of all the indicators pre-season.

Speaker 7:

Yes, we do have a hurricane expert that we can go ahead and link you to him so that he can be able to provide you with more information on that aspect because I am not the hurricanes expert. If you don't mind emailing John, and he can put you directly with our colleague. His name is Paul Shrek.

Craig Miller:

Oh, that's fine. Thanks.

Speaker 7:

You're welcome.

John Bateman:

Hey, this is John Bateman, NOAA and the folks at the National Hurricane Center will be issuing an end season update about the hurricane season sometime in late November. More information will certainly be included on that as well.

Craig Miller:

Okay. Maybe I'll just hang out and wait for that. Thanks.

John Bateman:

Thank you.

Valerie (Operator):

Our next question comes from Brian Sullivan of Bloomberg News. Your line is open.

Brian Sullivan:

Thank you. I've got a double barrel question here. One is for Johnna and that is if you could get into a little more about the equal chances for participation in precipitation in California for December. Then for John, do you have a timeframe if you think the Mississippi's going to kind of come back a little bit this year and how do you think it's going to wind up?

Johnna Infantii:

Hi, this is Johnna. In both outlooks, both the December and the DJS outlook for precipitation, we favor EC or equal chances for parts of California or all of California, depending on which outlook you were looking at and the monthly rainfall of California and the seasonal, just the northern parts. In terms of the EC, there was some indication from some of the models that there might be some tendency toward more drying over California and that can happen during La Niña events because we do typically see some drying over most of the southern tier of the U.S. However, in this case, we did go with EC for a few reasons. For the monthly, there was a bit more of a mixed signal in the beginning of the month, which can lower forecast confidence so there was a hesitancy to place a color on the map, so it's the 33 lower probability on the map.

For the seasonal outlook, in terms of Northern California, again, there was a little bit of an indication that some of the models could be leaning towards drier conditions with a low probability for northern parts of California. But what we took a look at for this particular forecast was something that we call [inaudible 00:34:06] scale, which is looking at how the models have performed historically. Given that there was lower scale for parts of Northern California and historical tendency for there to be more storminess or chances of increased precipitation that could be shorter lived over California during some of the winter months, we did lead more towards going with equal chances rather than a low probability of drying.

Brian Sullivan:

Thanks.

Johnna Infantii:

No problem.

Valerie (Operator):

Our next question comes from Ezra Romero with KQED, NPR San Francisco. Your line is open.

Ezra Romero:

Hi, just to follow up on the last question, I'm in the Bay Area and I was seeing on the three-month forecast, the Bay Area's half leaning below, half equal chances. Can you characterize what this three-month forecast would look like for this Bay Area, this kind of cusp place in California? Maybe this is for Johnna.

Johnna Infantii:

I was trying to be really careful with where that line was. That was a really difficult call to make, was actually where to make that cut between the EC and the dry. Of course, when we're looking at these maps, that's a very small region when we're looking at this in a climate sense. The area where I drew the line is actually pretty similar to where you would see a drop in scale, in [inaudible 00:35:56] scale over at California, so that's where we're kind of going with that difference there. Actually, I believe the gentleman before had a question for someone else as well that he didn't get to answer.

Ezra Romero:

Johnna, for that last one about San Francisco Bay Area, so you're saying that's more of an equal chances for the Bay Area than-

Johnna Infant:

Yeah, I think it's more of an equal chances.

Ezra Romero:

Gotcha. That just means it's up in the air at this point.

Johnna Infant:

Yeah.

Ezra Romero:

Thank you.

Johnna Infant:

Unfortunately. Sorry.

Ezra Romero:

No, that's no problem.

Jeff Graschel:

Yeah, I guess that was the question, the second question, that Brian Sullivan had was about the Mississippi River, if I'm correct, Brian?

Johnna Infant:

I believe so, yeah.

Jeff Graschel:

Okay. The little part of Mississippi, we're kind of still seeing conditions and stuff above those October, mid-October levels and stuff, at least a month. If you go back to the slide deck and look at slide eight, typically as we get into the middle portions of November and really through December, on average we do start to show higher conditions across the lower part of the Mississippi River and lower parts of the Ohio River. Certainly if we do get long stretches of dry weather, particularly over that Ohio and Tennessee area and stuff, it's not out of the question that we could still have some pretty low water conditions on the lower part of the Mississippi River extending into December and even into portions of January.

But right now, what we're seeing, at least for the next month or so, we are seeing conditions that are going to be higher than what we had seen in mid-October through the later portions of October. It's just going to be really dependent on what kind of rainfall we do get over the next couple of months as to whether we could even get back to the levels that we had in mid-October to the later portions of October.

I didn't say my name again, I apologize. My name is Jeff Graschel with the Lower Mississippi River Forecast Center.

Valerie (Operator):

Our next question comes from Joan Grala with News Day. Your line is open.

Joan Grala:

Hi, there. Thank you. I have a really easy question and then two harder questions. The first is just my [inaudible 00:38:29]. On the El Nino/La Nina slide where it says season, what do those abbreviations stand for, please? OND, for example?

Johnna Infant:

Yep, sure. All of the seasons, if you see the first letter, that is the first letter of the month's name, so OND would be October, November, December. Then similarly if you had NDJ, it's the first letter of the month, so it's November, December, January.

Joan Grala:

Excellent, thank you.

Johnna Infant:

This was Johnna, I'm sorry.

Joan Grala:

Oh, I appreciate that. That's such a help. Then the other two questions were for the New York metro area, will this be at all an unusual winter? Then I was wondering if you could address the significance of the switch to El Nino for the Atlantic hurricane season.

Johnna Infant:

For the first question, let me just jump over to a slide here. Where in New York did you say exactly?

Joan Grala:

Well, just think of Long Island, New York City, the metro area.

Johnna Infant:

In terms of it being an unusual winter, what these maps are showing is anywhere that there's a color, so the percent chance, that would be an increase or decrease above or below normal. In these cases, unusual is kind of a hard word to use, but you could say that depending on where you're looking at the map, it would be warmer than average or wetter than average.

Joan Grala:

Fair enough. Then could you possibly address what this switch to El Nino means for this area?

Johnna Infant:

We're actually not seeing a swap to El Nino. We're seeing a swap possibly to ENSO neutral conditions. If you looked at that graph that you were talking about on slide 12, those gray bars that you're seeing is increased chance of ENSO

neutral. You can see in the summertime that there is some indication that there is increasing probability of an EL Nina. However, the favored category as we move into summer into JJA, which is June, July, August, is ENSO neutral

Joan Grala:

What would that mean for hurricanes?

Johnna Infant:

Unfortunately I can't really answer the hurricane questions. We would release the hurricane outlook closer to the beginning of hurricane season. Sorry about that. But if you stay tuned for that hurricane outlook which will come closer to that time period, that would be great.

Joan Grala:

Okay, fair enough. I really appreciate your help.

Johnna Infant:

Oh, no problem.

Joan Grala:

Thank you.

Valerie (Operator):

Our next question comes from Barbara Moran with WBUR Boston. Your line is open.

Barbara Moran:

Hi, there. Thanks for taking my question. This is for Johnna. I'm looking at slide 12 of the presentation with the sea surface temperatures and it looks like, from what I can see, the Gulf of Maine looks quite a bit higher than average, and I'm wondering if you have anything more to say about that.

Johnna Infant:

I do have a little bit more to say about that. It is actually higher than average, which is one of the reasons that in the monthly forecast and the three month forecast, we did tilt the probability toward warmer than normal, particularly for New England. Does that help?

Barbara Moran:

There's no sort of causation for that in particular?

Johnna Infant:

Not that I can really tell you off the top of my head. I think that's more of a monitoring question. I'm not sure if NCEI might have something to add to that, but I can try and get you in touch with someone from NOAA that could answer more questions about sea surface temperatures if that would be helpful.

Barbara Moran:

Great. Thank you.

John Bateman:

Yep. Hey Barbara, this is John Bateman, so you can also feel free to reach out to me and I can connect you with Johnna or other folks too if you'd like that information.

Barbara Moran:

Great, thank you.

Valerie (Operator):

I show no further questions. Thank you.

John Bateman:

All right, wonderful. Thank you so much, Valerie. If there are no further questions, I will wrap up the call. First, I'd like to thank all of our speakers for their time and to everyone else for participating in this conference call. I will end by reminding you to mark your calendar for a couple of upcoming events. The release of the November 2022 U.S. climate report is scheduled for December 8th. The release of the November 2022 Global climate report is scheduled for December 14th, and NOAA will hold its next media climate call on December 15th at 11:00 AM eastern time. Lastly, an audio file of this call will be posted on the noaa.gov media advisory, the online version, later today. As I mentioned before, if you have any further informational needs, please feel free to email me, John Bateman. My contact information is available at the top of the media advisory. Thank you.

#